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Implementation of chemometrics in quality evaluation of food and beverages

Magdalena Efenberger-Szmechtyk, Agnieszka Nowak, and Dorota Kregiel

Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland

ABSTRACT
Conventional methods for food quality evaluation based on chemical or microbiological analysis followed
by traditional univariate statistics such as ANOVA are considered insufficient for some purposes. More
sophisticated instrumental methods including spectroscopy and chromatography, in combination with
multivariate analysis—chemometrics, can be used to determine food authenticity, identify adulterations
or mislabeling and determine food safety. The purpose of this review is to present the current state of
knowledge on the use of chemometric tools for evaluating quality of food products of animal and plant
origin and beverages. The article describes applications of several multivariate techniques in food and
beverages research, showing their role in adulteration detection, authentication, quality control,
differentiation of samples and comparing their classification and prediction ability.

GLOSSARY OF ACRONYMS: AHC: agglomerative hierarchical clustering; ANN: artificial neural networks; BAI: biogenic
amine index; BP-ANN: back-propagation artificial neural network; BP-MLP: back-propagation multilayer linear per-
ceptron; CA: cluster analysis; CART: classification and regression tree; DRIFTS: diffuse reflectance infrared Fourier
transform spectroscopy; EEMs: excitation-emission matrixes; ELISA: enzyme linked immunosorbent assays; ETAAS:
electrothermal atomic absorption spectrometry; EVOO: extra-virgin olive oils; FAAS: flaming atomic absorption spec-
trometry; FDA: Food and Drug Administration; FDA: Fisher discriminant analysis; FGC-E nose: flash gas chromatogra-
phy electronic nose; FTIR: Fourier transform infrared spectroscopy; FTIR-ATR/HT: FTIR attenuated total reflectance
spectroscopy/high throughput; FT-MIR: Fourier transform mid-infrared spectroscopy; GC-MS: gas chromatography
mass spectrometry; HCA: hierarchical cluster analysis; 1H NMR: proton nuclear magnetic resonance; HPLC: high per-
formance liquid chromatography; HSI: hyperspectral imaging; ICP-AES: inductively coupled plasma atomic emission
spectrometry; ICP-MS: inductively coupled plasma mass spectrometry; IRMS: isotope-ratio mass spectrometry; KNN:
k nearest neighbor; LC-MS: liquid chromatography-mass spectrometry; LDA: linear discriminant analysis; LS-SVM:
least squares support vector machines; MIR: mid-infrared; MLP: multilayer perceptron; MLR: multiple linear regres-
sion; NIRS: near-infrared spectroscopy; PCA: principal component analysis; PCR: principal component regression;
PDO: protected designations of origin; PLS-DA: partial least squares discriminant analysis; PLSR: partial least squares
regression; PNN: probabilistic neural networks; PTR-ToF-MS: proton transfer reaction-time of flight-mass spectrome-
try; QDA: quadratic discriminant analysis; RC-MLR/PLSR: regression coefficient MLR/PLSR; RDA: regularized discrimi-
nant analysis; RMS: root mean square; RMSEC: root mean square error of calibration; RMSEP: root mean square error
of prediction; SEP: standard error of prediction; SERS: surface-enhanced Raman spectroscopy; SI-PLS: synergy inter-
val PLS; SIMCA: soft independent modeling of class analogy; SOMs: Kohonen self-organizing map; SPA-MLR/PLSR:
successive projections algorithm MLR/PLSR; SPME-GC: solid phase microextraction gas chromatography; SVM: sup-
port vector machine; SW-NIRS: short-wavelength near infrared spectroscopy; RC-MLR/PLSR: rating curve MLR/PLSR;
TLC: thin-layer chromatography; TVC: total viable counts; UHT: ultra-high temperature; UPLC-QToF MS: ultra-perfor-
mance liquid chromatography quadrupole time of flight mass spectrometry; UVE-PLS: uninformative variable elimi-
nation-PLS; VOO: virgin olive oils; WPTER: wavelet packet transform for efficient pattern recognition
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Introduction

Chemometrics is a chemical approach which enables the analy-
sis of multidimensional data using mathematical statistics,
probability theory and information technology. Unlike tradi-
tional statistical methods, which are often inadequate for accu-
rate and deep interpretation of results, chemometrics allows
valuable information to be obtained from a wide range of com-
plex data sets, and facilitates the detection of hidden relation-
ships between variables. Analyzing a number of processes
occurring simultaneously in different environments is often
challenging, and requires a multidimensional methodology.

Statistical methods analyze only single variables, while chemo-
metric methods provide a multi-pronged approach. Chemo-
metric methods also reduce the number of analyses and
measurements required, saving time and minimizing costs
(Arvanitoyannis and van Houwelingen-Koukaliaroglou, 2003;
Tyszkiewicz and Tyszkiewicz, 2004; Kamal and Karoui, 2015).
Chemometric tools are therefore of great interest to industry.

Chemometric methods of pattern recognition can be divided
into two types: supervised and unsupervised. Unsupervised pat-
tern recognition determines the structure of a dataset on the
basis of measurements. It reveals clusters without assumptions
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regarding the number or type of classes. The results are pre-
sented as dendrograms or two/three dimensional graphs. The
most commonly used unsupervised pattern techniques are
PCA and CA, including HCA. In supervised pattern recogni-
tion, the number of classes is already known, as is the member-
ship of objects to those classes. New unknown samples can be
classified into known classes according to experimental results.
Supervised pattern recognition techniques include: LDA, QDA,
RDA, K-NN, SIMCA, SVM, PLSR, and ANN methods (Ber-
rueta et al., 2007; Zielinski et al., 2014b) (Table 1).

In recent years, consumer awareness regarding issues related
to food authenticity and labeling has increased. Detection of
adulteration is of great importance to ensure the quality and
safety of food. Unfortunately, regulations regarding the label-
ling of food products have in some cases proven to be ineffec-
tive at preventing trade fraud and the adulteration of food.
Therefore, new techniques are being developed to enable fast
and inexpensive evaluation of food authenticity. Attention has
been focused on chemometric tools, which classify products
based on their chemical composition. Food products can be

differentiated according to their geographical and botanical ori-
gins or production techniques (Zielinski et al., 2014b; Kamal
and Karoui, 2015). Chemometrics is also useful for detecting
the replacement of original ingredients with other additives.
Numerous research studies have been conducted into the use
of chemometrics in combination with analytical methods, espe-
cially chromatography and spectroscopy (Aculey et al., 2010;
Kamal and Karoui, 2015; Elzey et al., 2016; Melucci et al.,
2016). Other studies have investigated the possibility of using
chemometric methods in food microbiology, to evaluate the
level of microbial spoilage in food products, identify microor-
ganisms or detect mycotoxins (He and Sun, 2015; Sendin et al.,
2016).

This article describes the chemometric methods most com-
monly used in food chemistry and food microbiology. It pro-
vides a comprehensive overview of their application for the
analysis of food of animal origin (meat and meat products, fish
and seafood, milk, and dairy products) as well as beverages and
food of plant origin (fruits and fruit products, honey, crops,
olive oils, coffee, tea, and alcohols.

Table 1. Most commonly used chemometric tools.

Chemometric tool Overall features

Unsupervised Pattern Recognition
Cluster analysis (CA) Objects are grouped into clusters according to their similarity (proximity). The correctness of clusters is

monitored and deviating points are detected. The results of CA are usually presented in the form of
a dendrogram, a diagram (tree) showing the grouping of objects.

Hierarchical cluster analysis (HCA) The simplest and most commonly used form of cluster analysis. HCA creates a classification hierarchy
starting from a division in which each object is a single cluster and ending with a division in which
all the objects constitute a single cluster.

Principal component analysis (PCA) This method reduces the dimensionality of the original data set and leads to the creation of new
dimensions of data. PCA converts strongly correlated input variables into uncorrelated values, called
principal components (PCs). The first components account for the majority of the variability in the
original data set and the rest can be omitted without significant loss of information. This technique
enables a graphical presentation of the multi-dimensional structure of a data set.

Supervised Pattern Recognition
Discriminant analysis Techniques that assign samples to specific classes
Linear discriminant analysis (LDA)

and Fisher discriminant analysis
(FDA)

Based on a linear function, LDA is used for linear classification or leads to dimensionality reduction.
Although similar to Fisher’s discriminant analysis (FDA), LDA includes assumptions as to the normal
distribution of classes and equal covariance of classes.

Quadratic discriminant analysis (QDA) A technique closely related to LDA. It omits the assumption of equal covariance classes, but the
assumption of normality is maintained. It should not be used if the sample size is very small.

Regularized discriminant analysis
(RDA)

A compromise between LDA and QDA, which uses regularization of the covariance matrix.
Consequently, it can be used with small sample sizes.

K-nearest neighbor (KNN) Nonparametric method used for object classification and prediction. Classification is based on
similarities between objects. Samples are classified based on class membership of its k-nearest
neighbors. The model is based on parameter K, selected by cross-validation procedures to give the
lowest classification error. Due to limits on memory and processing power, the KNN method should
not be used as a single classification algorithm, but as a reference in comparative analysis for other
non-linear classifiers, such as ANN.

Soft independent modeling of class
analogy (SIMCA)

SIMCA is based on PCA model and defines classes according principal components (PCs) describing the
greatest variability. Classes are created according to distances (similarities) between objects. Classes
may overlap with a sample belonging to any number of classes, or may not fit into any class.

Support vector machine (SVM) A linear classification method, usually applied, however, to solve nonlinear problems. This model is
based on the nuclear function (kernel), and is used when a linear separation of objects is impossible.
Original objects are transformed into a new space in which classes can be linearly separated.

Partial least squares discriminant
analysis (PLS-DA)

Discriminatory variant of PLS model (PLS-DA), used to classify samples.

Correlation and Regression Analysis
Partial least squares regression (PLSR) Multivariate calibration method. PLS regression constructs a single quantitative model for many

analyzed variables and is used in combination with one dependent variable. It is used as a
prognostic model.

Artificial Neural Networks (ANN) A prognostic model built using an extensive network of neural nodes which exchange messages,
simulating the operation of the human brain. Taught by stimulus and response, not by an
algorithm. It is impossible to obtain a correlation between the input and the output of a neural
network.
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Chemometrics in quality evaluation of food
of animal origin

Chemometrics in quality evaluation of meat
and meat products

Consumers are increasingly aware of issues regarding the
authenticity and quality of meat and meat products, with high-
profile cases of food adulteration and false labeling being
reported in the media. Identification of adulteration is essential
not only from the point of view of the law, but also for moral,
religious, cultural, diet and health reasons. Sometimes, meat
products are made with lower value meats or meat species
other than those declared (Balog et al., 2016). Furthermore,
muscle proteins can be replaced with less expensive vegetable
proteins, such as lupine, pea and soy proteins. These substitutes
are potential allergens, and can have a significant effect on
human health, especially among people suffering from allergies
(Hoffmann et al., 2016). Therefore, research is underway to
develop fast, cheap and reliable methods of assessing the quality
and authenticity of meat products. Of particular interest is the
application of chemometrics, which enables classification of
meat products on the basis of their chemical composition
(Kamruzzaman et al., 2015).

Studies show that Raman spectroscopy and PCA can be suc-
cessfully used to differentiate salami products based on fat com-
position according to meat origin (Boyaci et al., 2014). Similarly,
Raman spectroscopy in combination with PLS-DA makes it pos-
sible to distinguish three types of sausage (poultry, turkey and
mixed) according to their contents of fatty compounds. PLS-DA
models revealed specificity and sensitivity values of 88.9–100%,
accuracy and efficiency values in the range of 94.7–100% and
94.4–100%, respectively and correlation coefficients of between
0.90 and 1.00 (Campos et al., 2014). Traditional Indonesian
meatballs (Bakso) are made of beef, but they can be also pre-
pared with chicken, pork or fish meat. Due to its high price, pro-
ducers substitute beef with a wild boar meat, which is considered
by Muslims as haram and forbidden for consumption. In studies
by Guntarti et al. (2015), FTIR spectroscopy in combination
with PCA was used to distinguish meatballs made from beef and
wild boar meat. Only two samples of meatballs labeled as 100%
beef did not belong to any group, which suggests that they could
have been made from a different kind of meat. A PLSR model
was also built to quantify wild boar fat. The correlation coeffi-
cient between the actual value and the value predicted by FTIR
was 0.998 (RMSEC D 2.00%).

Irradiation is a very effective food preservation technol-
ogy, which is used to reduce pathogenic bacteria. The use
of irradiation in the European Union is regulated by two
directives: Framework Directive 1999/2/EC and Implement-
ing Directive 1999/3/EC. Currently, the products authorized
for irradiation are: fruit and vegetables including root vege-
tables, cereals, cereal flakes, rice flour, spices, condiments,
fish, shellfish, fresh meats, poultry, frog legs, raw milk cam-
embert, gum arabic, casein/caseinates, egg whites and blood
products (http://ec.europa.eu/food/safety/biosafety/irradia
tion/legislation/index_en.htm last update: 26.04.2017). Previ-
ously, use of irradiation was only allowed for preserving dried
aromatic herbs, spices and vegetable seasoning. Meat and meat
products were not included. Zanardi et al. (2015) reported the

use of PCA for the classification of irradiated and non-
irradiated beef samples based on 1H NMR spectra. Analysis
revealed the occurrence of reliable biomarkers for distinguish-
ing between irradiated and non-irradiated beef: glycerol, lactic
acid esters, tyramine and p-substituted phenolic compound.
184 It was possible to separate samples treated with higher irra-
diation doses (8 and 4.5 kGy) from the controls, but samples
treated with low irradiation doses (2.5 kGy) were grouped
together with the controls. These results show that PCA is not
always an effective chemometric technique. Although the first
three PCs explained 86.73% of the total variance, separation
was not achieved. With unsupervised learning techniques, no
information is given concerning the data and class labels. In
order to confirm the lack of differences between control sam-
ples and samples with low doses of irradiation, supervised
learning should additionally be applied.

Other studies have described the use of chemometric models
for predicting meat spoilage processes. The microbiological
safety of meat and meat products is crucial for public health. It
is therefore of great importance to detect pathogens and to
ensure that levels of microorganisms are within acceptable lim-
its. Contamination of meat and meat products is caused by
many different microorganisms, mainly bacteria, such as Aci-
netobacter sp., Aeromonas sp., Brochothrix thermosphacta, Fla-
vobacterium sp., Moraxella sp., Pseudomonas sp., Psychrobacter
sp., Streptococcus sp., and lactic acid bacteria. During metabolic
processes, bacteria synthesize undesirable compounds, such as
indole, skatole, ammonia, hydrogen sulfide, biogenic amines,
lactic acid, CO2, acetoin, diacetyl, acetic acid, and valeric acid,
which adversely affect the organoleptic characteristics of meat
and meat products. Therefore, the levels of these metabolites
can be correlated with the degree of microbiological contami-
nation in food products (Ellis and Goodacre, 2001).

Papadopoulou et al. (2011) applied FTIR spectroscopy in
combination with a PLSR model to monitor microbial counts
during aerobic storage of pork meat samples at different tem-
peratures (0�C, 5�C, 10�C, and 15�C). Spectral data were corre-
lated with microbiological load (TVC), the number of
Pseudomonas sp., B. thermosphacta and lactic acid bacteria. In
each case, the correlation was greater than 0.80. Moreover, the
PLS-DA approach achieved 100% accuracy for the classification
of spoiled meat samples, with 93.3% and 86.7% accuracy for
fresh and semi-fresh samples, respectively. Classification errors
could in some cases result in uncertainty during sensory analy-
sis and variability in the samples. Analysis was performed by a
sensory panel, whose evaluations may not be reliable. In studies
by Ammor et al. (2009), chemometric techniques were used to
monitor spoilage processes in ground beef stored under differ-
ent atmospheric conditions (aerobically, under modified atmo-
sphere and using an active packaging) and temperatures (0�C,
5�C, 10�C, and 15�C). The results indicate that FTIR spectros-
copy can reveal metabolic fingerprints, reflecting the degree of
food spoilage. The FDA method enables beef to be differenti-
ated in terms of its freshness and storage atmosphere and in
both cases 100% of samples were correctly classified. When
cross-validated, FDA provided 76.3% correct classification
according to freshness and 92.5% according to storage atmo-
sphere. No fresh sample was included in the spoiled group or
vice versa. Analysis was also performed by a sensory panel,
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whose evaluations may not be reliable. PLSR was used to pre-
dict the number of microorganisms in ground beef and its pH,
with fits of R2 0.80 and 0.92, respectively. Wang et al. (2011)
built a model using LS-SVM to predict total viable bacteria
count in pork (R2 D 0.9426). Eight selected optimal wave-
lengths were investigated, to construct a TVC prediction model
(R2 D 0.9236). Huang et al. (2013) developed a TVC predictive
model for pork using BP-ANN. These authors report that their
model based on fusion data (image and spectra data) was far
superior (R2 D 0.83; RMSEP D 0.243 log CFU/g) to either of
two separate models: one model based on images (R2 D 0.4104;
RMSEP D 1.169 log CFU/g) and another based on spectra
(R2 D 0.7867; RMSEP D 0.459 log CFU/g). This observation is
very important. Through data fusion it is possible to assess
both the internal (chemical composition, tissue structure, etc.)
and external (color, texture, etc.) attributes of pork meat.

Lin et al. (2004) describe the use of SW-NIR spectroscopy
coupled with PCA and PLSR to detect and quantify microbial
loads in chicken meat. PCA separated samples held for 8 h or
longer more clearly than the control (held for 0 h). However,
samples stored for less than 8 h were not separated from the
control. PLSR model showed potential to predict microbial
load in chicken meat (R2 D 0.91; SEP D 0.48 log CFU/g). PCA
was used to cluster chicken meat stored in a modified atmo-
sphere in terms of microbial load, sensory evaluation and the
concentration of metabolites (Vainionp€a€a et al., 2004). The use
of ANN to assess meat freshness has also been reported (Argyri
et al., 2010). Beef samples were classified concerning their bio-
chemical profiles, determined by FTIR spectroscopy. MLP—
artificial neural networks showed high accuracy. The network
was able to classify correctly 91.7% of fresh samples 94.1% of
spoiled samples and 81.2% of semi-fresh samples with none of
the fresh samples being categorized as spoiled meat, or vice
versa. The authors also used MLP-neural networks to predict
the number of microorganisms in meat based on the results of
FTIR spectroscopy (Bias factor Bf D 0.951–1.031).

Montel et al. (1996) reported the use of PCA for the identifi-
cation of Staphylococcus andMicrococcus strains, based on their
biochemical properties. PCA revealed a relation between the
qualitative and quantitative compositions of volatile com-
pounds in meat products and inoculation strains. The strongest
dry-cured odor was observed in samples inoculated with Staph-
ylococcus carnosus and Staphylococcus xylosus, which have low
lipolytic and proteolytic activities and do not produce acetoin,
but which reduce nitrate very effectively.

Biogenic amines can occur naturally in foods. However, they
are also released during proteolytic processes. Excessive levels
of biogenic amines are carcinogenic. Meat, due to its high pro-
tein content, is an excellent environment for the synthesis of
biogenic amines. Meat spoilage bacteria, including Escherichia
coli, Pseudomonas sp., Proteus sp., Micrococus sp., and Lactoba-
cillus sp., reveal high activity in the presence of proteolytic
enzymes. The number of these microorganisms can therefore
be associated with the concentration of biogenic amines in
meat and meat products (Bota and Harrington, 2006), and bio-
genic amines may be used as indicators of meat quality (L�azaro
et al., 2015). The effect of microorganisms, including starter
cultures, on the synthesis of biogenic amines in fermented meat
products was considered as an indicator of hygienic conditions

and good manufacturing practices by Parente et al. (2001).
PCA showed no association between the content of biogenic
amines, ripening time, pH level, microbial load or type of
starter culture used. The first four components explained 75%
of total variance. Cheng et al. (2016) studied several PLSR and
MLR models (RC- PLSR, RC-MLR, SPA-PLSR, and SPA-MLR)
to determine BAI in pork. The most accurate results
(R2 D 0.957; RMSEP D 4.866 mg/kg) were obtained using an
optimized and simplified RC-MLR model, while the classical
PLSR model showed the lowest prediction accuracy (R2 D
0.895; RMSEP D 7.559 mg/kg). These results suggest that
instead of classical regression models, such as MLR and PLSR,
simplified models can be used with higher prediction ability
than their classical equivalents.

Chemometrics in quality evaluation of fish
and seafood products

Seafood products can be classified in terms of biological species,
geographical origin and method of production. This informa-
tion must be verified not only to avoid mislabeling and trade
fraud but also to ensure food safety and regulatory compliance.

Ortea and Gallardo (2015) used stable isotope ratio analysis
(C13, N15) and multi-element analysis (As, Cd, Pb, S, and P)
combined with chemometrics to study seafood product authen-
ticity. PCA and CA well separated samples in terms of produc-
tion technique but failed to differentiate in terms of origin and
species. DA achieved 100% correct classification of shrimps
was achieved in terms of origin and production method, and
93.5% accuracy in terms of species when all seven variables
were considered. This paper confirms that, in some cases,
supervised learning methods are more appropriate than unsu-
pervised learning methods. Using unsupervised techniques
may be suitable when there are significant differences between
the samples. Moreover, the number of samples can influence
differentiation. For wild/farmed shrimps, the classification abil-
ity of DA decreased with smaller amounts of data.

Ottavian et al. (2012) reported effective use of NIR spectros-
copy for the authentication of wild European sea bass. Models
based on PLS-DA and WPTER confirmed that NIR spectros-
copy can be applied to distinguish farmed from wild sea bass.
Classification results obtained using NIR spectroscopy were
almost identical to those obtained by analyzing chemical prop-
erties and morphometric traits. The most predictive spectral
regions were related to fat, fatty acids and water content.

Similar studies have been conducted for turbot (Psetta max-
ima), which were classified according to production method
and fishing areas (Denmark, the Netherlands, Spain). Fatty
acid composition and stable isotope ratios (C13 and N15) were
determined in muscle tissue from turbot. PCA separated
farmed from wild fish but failed to distinguish between fish
with different geographical origins. Better separation was
achieved using LDA. Recognition accuracy was 100% for sam-
ples classified according to production method and 93.3% in
terms of catching zone. Only one wild sample was incorrectly
classified as a farmed sample using SIMCA (Busetto et al.,
2008).

Chemometric techniques have been used to identify mussels
(Mytilus galloprovincialis) from Galicia in Spain. These mussels
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have been given Protected Designation of Origin (PDO) status
by the European Commission. However, many mussels sold in
Galicia (in particular frozen and canned mussels) do not come
from this region. Identification of original mussels from Galicia
was therefore performed, based on the content of trace ele-
ments determined by ICP-MS. Using LDA, prediction accuracy
was 95.6%, although false positive and false negative results
occurred. SIMCA failed to classify samples according to differ-
ent parts of Galicia (prediction ability of 39.1–85.7%), but man-
aged to accurately distinguish mussels from the region as a
whole and those from elsewhere (prediction ability of 100%).
However, these results were obtained after reducing the num-
ber of variables. Before this reduction, 100% of non-Galician
samples but only 75% of Galician samples were classified cor-
rectly. It should be mentioned that even in the training set, less
than 100% recognition ability (over 90%) was achieved for
Galician mussels. The ANN model was the most effective, how-
ever, classifying samples with recognition accuracy of 100%,
including according to local area of origin. (Costas-Rodr�ıguez
et al., 2010). SIMCA has also been used to identify different
shrimp species (Litopenaeus vanname, Penaeus monodon) and
their geographical origins (Ecuador, Philippines, Thailand,
United States), based on multidimensional fluorescence finger-
printing (Eaton et al., 2012).

Short-wavelength near infrared spectroscopy combined with
chemometric techniques have been used to determine the levels
of microorganisms and monitor the spoilage process in rainbow
trout fillets (Oncorhynchus mykiss). PCA based on SW-NIRS
results showed that it is possible to group trout fillets according to
storage time and temperature. The control samples (day 1) were
clearly separated from the samples stored for 4 days or more at
4 �C. The stored samples held for 10 h or longer at 21 �C were
also separated from the control. Validation of SW-NIR spectros-
copy using PLSR indicated that this method can be successfully
used to assess microbiological counts in trout meat (R2 D 0.97.
SEP D 0.38 log CFU/g for fresh side at 4 �C; R2 D 0.94, SEP D
0.53 log CFU/g for skin side at 4�C; R2 D 0.82, SEP D 0.82 log
CFU/g for minced sample at 21 �C) (Lin et al., 2006).

Certain bacteria species isolated as contaminants in salmon
can be characterized on the basis of synthesized volatile com-
pounds (e.g. Carnobacterium piscicola according to the concen-
tration of diacetyl and B. thermosphacta based on the content
of 2-heptanone and 2-propanone). Using PCA and GC-MS,
Joffraud et al. (2001) identified Aeromonas sp., Shewanella
putrefaciens and Enterobacteriaceae, Lactobacillus sp., C. pisci-
cola and B. thermosphacta as the bacteria mainly responsible
for the sensory deterioration of products. The composition of
volatile compounds was found to be characteristic for certain
bacterial species.

Chemometric techniques are widely used for the analysis of
toxic trace elements in seafood. PCA based on FAAS and
ETAAS has been used to compare different methods of seafood
pre-treatment for removing As, Cd, Cr, Cu, Fe, Mg, Mn, Ni,
Pb, Se, and Zn (Bermejo-Barrera et al., 2001). Aflaki et al.
(2016) used PCA cluster biogenic amines based on fish species
and storage time. Fish species differed considerably in terms of
their contents of spermine, spermidine, and phenylethylamine.
The profiles of biogenic amines can therefore be associated
with fish species and storage time.

Chemometrics in quality evaluation of dairy products

Milk and dairy products are consumed all over the world.
Whole milk products contain high levels of nutritious proteins,
and can reach relatively high prices on the market. This food
group is particularly susceptible to adulteration, as producers
seek to gain more profit. They modify the composition of dairy
products by replacing some ingredients with non-dairy or other
dairy additives. Chemometric methods provide a useful tool for
verifying the authenticity and quality of dairy products (Kamal
and Karoui, 2015).

Souza et al. (2011) analyzed the presence of adulterants such
as starch, chlorine, formol, hydrogen peroxide, and urine in
Brazilian UHT milk. Although starch was not detected, other
adulterants were found in all the samples. Urine was the most
common adulterant (detected in 55% of samples). Urine is
added to disguise the addition of water, increasing the possibil-
ity of microbial contamination. PCA and HCA methods were
successfully applied to verify the occurrence of adulterants in
milk, and associate them with the geographical locations of
industrial plants. A similar study was performed by Santos
et al. (2013), who report the use of SIMCA to discriminate con-
trol milk samples from samples adulterated with whey, syn-
thetic milk, urea, and hydrogen peroxide. 343 Classification
ability was from 90% (control) to 98% (samples adulterated
with urea). Five of the samples did not match any of the groups.
PLSR was used to estimate levels of adulteration in dairy prod-
ucts based on MIR-microspectroscopy and R2 ranged from
0.90 (hydrogen peroxide) to 0.98 (urea and synthetic urine)..

Melamine is a substance containing high level of nitrogen
(66.7% by mass). It is illegally used in industry to increase pro-
tein content in food products. Conventional methods (Kiejfahl
and Dumas tests), which are used to examine total nitrogen
content, do not allow identification of the nitrogen source (El-
sheikh et al., 2016). Wu et al. (2016) used NIR spectroscopy
combined with chemometrics to identify and quantify mela-
mine in milk. PLSR and UVE-PLS analysis were used to con-
struct quantitative models with R2 values of 0.93 and 0.97,
respectively. However, UVE-PLS was more accurate. A PLS-
DA model was constructed to classify unadulterated and adul-
terated milk samples, with sensitivity and specificity of 100%.
The specificity of the SIMCA method was also 100%, but sensi-
tivity was 81.8%.

Dairy products are a suitable environment for the growth of
microorganisms, so maintaining their microbiological safety is
of great importance. Traditional methods used to quantify
spoilage bacteria are time-consuming. Nicolaou and Goodacre
(2008) used FTIR (FTIR-ATR and FTIR-HT) spectroscopy in
combination with PLSR to detect the relationship between met-
abolic fingerprints and microbial load. PLSR enabled quantifi-
cation of total viable counts, based on FTIR spectra but FTIR-
ATR was more accurate (for the test set: RMS error D 0.25)
than FTIR-HT (for the test set: RMS error D 0.84). According
to Paradkar and Irudayaraj (2002), PLSR combined with FTIR
spectroscopy has also been used to estimate cholesterol content,
with an R2 > 0.99 and SEP < 0.98

Cruz et al. (2013) discriminated between low and full-fat
yoghurts in terms of pH, color and firmness, using different che-
mometric methods (PCA, HCA, SIMCA, K-NN, and PLS-DA).
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Total separation was not achieved using PCA or HCA. However,
KNN and PLS-DA methods resulted in prediction ability of
100% for full fat yoghurts, 100% for low-fat yoghurts (KNN)
and 95% for low-fat yoghurts (PLS-DA). SIMCA classified full
fat yoghurts with 100% prediction ability but low-fat yoghurts
with only 50% prediction ability. A large set of samples (83 full-
fat and 43 low-fat yogurts) was studied. When there are a large
number of samples (n > 20), unsupervised techniques may not
be appropriate, and supervised pattern recognition techniques
may provide better separation. Moreover, the main drawback of
HCA is that it requires a decision to be made regarding the
number of clusters in which the variables should be grouped. If
an algorithm is applied, the results may not be unique.

Raw cow milk varies in terms of the concentration of miner-
als and trace elements. This variation is the result of a range of
factors, including animal species, health condition, lactation
state, diet, the season, the geographical situation of the farm
and soil type. LDA provided information that complemented
the results of PCA and enabled cow milk to be differentiated in
terms of seasonal criteria (97.1% of samples correctly classi-
fied), but very low classification accuracy (47.8%) was observed
in terms of origin. The geographical origin of milk is connected
with different feeding practices, such as use of nutritional addi-
tives and supplements, as well as to contamination and stress
factors (climate, disease or lactation), which could explain such
low classification accuracy. Use of PCA reduced the number of
elements from 16 to 5 principal components (Sola-Larra~naga
and Navarro-Blasco, 2009).

Cheese is another group of dairy products prone to adultera-
tion practices. Vegetable oils and fats can be substituted for
milk fat to produce imitation cheese. Monakhova et al. (2013)
used 1H NMR and 13C NMR spectroscopy together with che-
mometric techniques to detect cheese adulterated with vegeta-
ble fat. PCA separated imitation from unadulterated cheese
samples. Imitation cheese samples were located in the range of
negative PC1 values (1H NMR) or positive PC3 values (13C
NMR). However, 1H NMR spectroscopy provided better differ-
entiation. By removing imitation products, it was possible to
group the cheeses by type (Edamer, Gouda, Feta, or Emmenta-
ler). Using a PLSR model, NMR spectra were correlated with
the content of certain compounds (saturated and unsaturated
fatty acids and their esters), determined using the GC method
(r2 D 0.75–0.95). This enabled quantification of vegetable fat
substitutes.

De S�a Oliveira et al. (2016) employed Raman spectroscopy
and chemometric tools to detect starch (another commonly
used adulterant in dairy products) in spreadable cheese. PLS-
DA identified adulterated and unadulterated cheese samples
with 100% accuracy. PLSR was used to quantify starch content.
The correlation between the reference values and the values
estimated by the model was 0.989 for the calibration set and
0.984 for the validation set. Raman spectroscopy can detect
starch with a minimum concentration of 6%. However, imple-
mentation of chemometrics can improve its sensitivity. The
limit of detection was 0.34% for the model and the limit of
quantification was 1.14%.

Oscypek is a Polish cheese with PDO status. Authentic PDO
Oscypek is made in the Polish Tatra Mountains (Podhale
Region), using raw ewe’s milk and traditional technology. The

addition of cow’s milk is allowed in quantities up to 40% if the
milk comes from a mountain cow breed known as Polish Red.
PDO Oscypek has a characteristic composition of volatile com-
pounds, which differentiates it from Oscypek-like cheeses.
Majcher et al. (2015) used the GC-MS method (electronic
nose) in combination with chemometrics to identify original
Oscypek and detect mislabeling and adulteration. PCA per-
fectly separated PDO Oscypek from adulterated cheeses. LDA
and SIMCA enabled classification of original cheese with the
same classification accuracy (100%). Using SVM, classification
accuracy of 97.9% was achieved and only industrially-produced
samples were misclassified. This may have been due to the
influence of technological processes on the chemical composi-
tion of the industrially-produced samples.

Chemometrics in quality evaluation of beverages
and food of plant origin

Chemometrics in quality evaluation of fruits
and fruit products

Verifying the authenticity of food products of plant origin is
extremely difficult, due to the combination of factors involved,
including cultivar, growing region, soil conditions, degree of
plant maturity, storage conditions and processing technology.
Fruit juices are often adulterated by the addition of water, inex-
pensive ingredients such as sugar, acids or colorants and even
with peel extracts and other less expensive juices (Muntean,
2010; Jandri�c et al., 2014).

Jandri�c and Cannavan (2015) classified citrus fruits/juices
according to origin, variety and production techniques using
UPLC-QToF MS coupled with chemometrics. PCA, PLS-DA,
and SIMCA enabled effective separation of authentic from
adulterated juice samples. SIMCA and PLS-DA enabled to
detect samples adulterated with other citrus juices at 1% and
with water at 5%. PLS-DA and SIMCA provided recognition
ability of 100% for citrus fruits, oranges of various geograph-
ical origins and fresh squeezed commercial orange juices.
Lower recognition ability (80%) was achieved for orange jui-
ces made from concentrates. In this study, PCA successfully
differentiated fruit juice samples and enabled the data to be
structured. However, since PCA is not a classification model,
PLS-DA and SIMCA methods were used as classification
tools to confirm the results. Discrimination was observed
between hand-squeezed and commercial juices, probably due
to differences in polyphenol content related to the use of
each technique.

Fruits are characterized by the occurrence of phenolic com-
pounds. Abad-Garc�ıa et al. (2012) reported the use of CA, PCA
and LDA to group different citrus species based on the concen-
tration of their polyphenols. In this paper, unsupervised techni-
ques were used to reveal the data structure and reduce the
number of variables. Classification was then performed with a
limited amount of variables. The prediction accuracy of the
LDA classification model was 100% for tangerine and grape-
fruit juices, but lower for sweet orange and lemon juices (95.7%
and 89.9%, respectively). PLSR was found to be a promising
predictive model for estimating the percentage of adulteration
in sweet orange juices (R2 D 0.9541 and after cross-validation
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R2 D 0.9508) For PCR model, the correlation coefficients were
lower (R2 D 0.9254 and after cross-validation R2 D 0.9240).

Braga et al. (2013) found that aroma compounds can be
used as markers to differentiate apple juices and fermented
apple juices made from different varieties of apple. PCA and
HCA methods separated juices based on aroma composition
and physicochemical properties. The major compound identi-
fied in all samples was ethanol.

Guo et al. (2016) constructed multivariate calibration mod-
els (PLSR, LS-SVM, and BP-ANN) based on NIR spectra for
quantitative analysis of total sugar, total acid, total phenolic
content and antioxidant activity in jujube fruits. The best classi-
fication results were obtained using the LS-SVM model with
prediction rate of 93.8% and calibration rate 98.5%, whereas
BP-ANN provided prediction rate of 81.2% and calibration rate
of 100%. The LS-SVM model was also the most suitable quanti-
fication model (R2 D 0.904–0.978). PCA and LDA revealed dif-
ferences between jujube fruits of different geographical origins.
Guo et al. (2009) used HPLC to determine levels of triterpenoid
acids in dried Ziziphus jujuba fruits. PCA and HCA methods
differentiated and separated cultivars of Z. jujuba based on
their triterpenoid acid content. Interestingly, the Dongzao culti-
var was completely separated, suggesting considerable genetic
distance from the other cultivars. Moreover, fruits from the
same cultivation region were grouped together, suggesting sim-
ilar triterpenoid acid content. This was probably due to the
fruits having been grown under the same climatic conditions
and in the same soil type.

Brazilian frozen pulps from a range of fruits were analyzed
based on chromaticity, phenolic compounds, carotenoids and
antioxidant activity. Three clusters were obtained using HCA
and corroborated with PCA. Strawberry, red fruits, blackberry,
acai, and grape pulps were found to contain the highest concen-
trations of phenolic acids and flavonoids, and to have the great-
est antioxidant activity. Coconut, graviola, cocoa, pineapple,
mint, pineapple, umbu, seriguela, tamarind, peach, and cashew
pulps showed the lowest phenolic content and free-radical
scavenging activity (Zielinski et al., 2014a).

Chemometrics in quality evaluation of honey

Honey is a natural product consisting mainly of sugar and
water. It also contains minor amounts of minerals, proteins,
vitamins, organic acids, flavonoids, phenolic acids, enzymes,
and other phytochemicals. These components determine the
quality of honey. The chemical composition of honey, as well
as its quality, depends primarily on the botanical origin of the
plants. Therefore, much research has been conducted to iden-
tify markers for distinguishing between different types of honey
(Anklam, 1998; Zhao et al., 2016).

Honeys with different botanical and geographical origins,
produced under varying climatic conditions, also differ in
terms of their flavonoid content. Several studies have focused
on the composition of polyphenols in different types of honey
(G�omez-Caravaca et al., 2006; Hadjmohammadi et al., 2009;
Bertoncelj et al., 2011). Bertoncelj et al. (2011) used the LDA
method to classify varieties of Slovenian honey based on their
flavonoid and abscisic acid (phytohormone) contents. How-
ever, only 85% of the honey samples were correctly classified.

In the case of acacia and linden honey, classification accuracy
was 100%, for floral honeys—80%, while for spruce honey it
was only 60%. No specific markers were found for the differen-
tiation of honeys. However, pinobanksin galangin and abscisic
acid were the most discriminating variables. Maybe, other phe-
nolic compounds, e.g., phenolic acids and flavonoid glycosides
should be also analyzed to achieve better classification results.

In studies by Zhou et al. (2014), polyphenols (kaemferol,
morin, and ferulic acid) were found to be effective markers for
the identification of chaste honey and rape honey. Multivariate
methodologies such as PCA, PLS, PLS-DA, and SIMCA were
able to differentiate honey according to floral origin. PCA suc-
cessfully differentiated samples and was used to build classifica-
tion models. For the calibration set using a SIMCA model,
discrimination accuracy was 94.53%. For the predictive set, dis-
crimination accuracy was 96.43%, with R2 values of 0.8002 and
0.8088. The PLS model was characterized by low RMSECV D
0.1463 for the training test, and RMSEP D 0.1929 for the test
set, signifying that the model was very accurate. PLS-DA classi-
fied honey samples into two groups.

Daher et al. (2008) used PCA to separate nectar honeys
from honeydew honeys. The main marker was salicylic
acid, an aromatic compound. PCA was also used by Flanjak
et al. (2016), for the differentiation of Croatian honey types
(black locust, lime, sage, chestnut, and honeydew), based on
antioxidant capacity and physicochemical properties. In
recent studies, 7 monofloral honey varieties made from cit-
rus, chestnut, sunflower, honeydew, robinia, rhododendron,
and linden tree were studied, according to their content of
volatile organic compounds. PCA did not separate honey
samples, LDA upon PCA provided better separation and
correctly classified 89% samples in the test set. The most
precise classification results were achieved using stepwise
LDA and PNN methods, with accuracy rates of 100% and
90%, respectively. (Schuhfried et al., 2016).

Studies of honeydew, buckwheat and rape honey from
Poland have shown differences in terms of mineral content (Al,
B, Ba, Ca, Cd, Cr, Cu, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn). The
elements were determined using ICP-MS. LDA was able to dif-
ferentiate between types of honey with 100% accuracy. How-
ever, the results were less satisfactory for the geographical
origin of buckwheat honey (91.7%), rape honey (90.9%), and
honeydew honey (97.1%) (Chudzinska and Baralkiewicz,
2011). Interestingly, studies using PCA and CA methods have
revealed significant differences between the concentrations of
metals in honey collected in urban, industrial and rural areas.
The composition of honey may reflect the degree of contamina-
tion in honey plants, soil and air (Rodr�ıguez Garc�ıa et al., 2006).

Raman spectroscopy has been applied to determine the con-
tent of selected sugars in honey. PCA was used to group honey
samples with high glucose, fructose, sucrose and maltose con-
tents. The results were validated using PLSR (R2 D 0.949–
0.968) for, and ANN (R2 D 0.956–0.978) models, suggesting
that Raman spectroscopy can be used to quantify the sugar
content in honey (€Ozbalci et al., 2013). ANN is a relatively new
predictive model, which does not require any threshold values
nor use a strict mathematical equation. Contrary to traditional
methods, in which the strict rules and algorithms may cause
difficulties, ANN is taught by examples (Baş et al., 2007).
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Chemometrics in quality evaluation of crops

Crops such as maize, wheat, rice, and grains are consumed in
large quantities and therefore deserve consideration in terms of
safety and quality. Cereal products are very prone to microbial
contamination, especially by fungi. Various species of Aspergil-
lus, Fusarium, and Penicilium have been detected in cereal
products. Not only fungal spores, but also their mycotoxins, are
a huge problem for producers (Sendin et al., 2016). Mycotoxins
are secondary fungal metabolites and can be synthesized at any
stage of product processing. Most are chemically stable, heat
resistant, and very difficult to inactivate. Mycotoxins can have
harmful effects on the health of both humans and animals,
including carcinogenic, neurotoxic, hepatotoxic nephrotoxic,
teratogenic, and immunotoxic activities (Min and Cho, 2015).

The most common mycotoxins that occur in cereal products
are fumonisins, trichothecenes, and zearalenones (produced by
Fusarium sp.), as well as aflatoxins (produced by Aspergillus sp.),
and ochratoxins (produced by Aspergillus sp. and Penicilium sp.)
(Min and Cho, 2015; K€oppen et al., 2010). Classical methods for
the detection of mycotoxins include HPLC, ELISA, TLC, and
GC. The most common method is HPLC. However, these tech-
niques are time-consuming and demanding, and spectroscopic
methods in combination with chemometrics could therefore rep-
resent a promising alternative (Min and Cho, 2015).

Giacomo and Stefania (2013) used NIRS and multivariate sta-
tistical regression (PLSR) to determine the content of fumonisins
in maize. The concentration of fumonisin was measured using
HPLC and correlated with NIR spectra. Two models were
obtained with high correlations in terms of calibration (0.995,
0.998) and validation (0.908, 0.909). The models described the
relation between fumonisin content and NIR spectra well. The
authors also obtained a satisfactory limit of detection, compatible
with the EU-defined threshold of 4 mg/kg. Lee and Herrman
(2016) report the use of SERS for detecting fumonisins in maize.
Chemometric classification methods such as KNN, PLS-DA, and
LDA, and quantification methods such as PLSR, MLR, and PCR
were evaluated. KNN models enabled correct classification rates
in the ranges of 79.6–84.5% and 70.6–79.4% for the training and
validation datasets, respectively. The LDA models revealed lower
classification accuracy for the training dataset (68.0–79.6%), but
had comparable classification accuracy for the validation dataset
(67.6–85.3%). The disadvantage of LDA is that it is sensitive to
outliers and fails when discriminatory information is contained
in the variance of the data, not in the mean. The KNN algorithm
is often influenced by irrelevant attributes, which contribute to
meaningless results. The PLS-DA model had 100% classification
accuracy for the training dataset, but the lowest classification
accuracy for the validation dataset. The class separation in data-
set could be nonlinear and thus analysis was problematic. Turn-
ing to the quantification models, the correlation coefficients for
the MLR model were R2 D 0.940–0.955 (training dataset) and
0.902–1.076 (validation dataset); for the PLSR model R2 D
0.947–0.993 (training dataset) and R2 D 0.946–1.096 (validation
dataset); and for PCR R2 D 0.889–0.930 (training dataset) and
R2 D 0.910-1.008 (validation dataset). However, MLR models
could not predict low fumonisin content below 5 mg/kg, which
is the maximum acceptable level of fumonisins in maize as
defined by the FDA.

Using FTIR spectra and chemometric analysis, Kos et al.
(2016) classified maize based on deoxynivalenol content. The
EU regulatory limit for deoxynivalenol in unprocessed maize is
1.75 mg/kg. The PCA method showed overlapping between
maize samples with lower and higher levels of deoxynivalenol
contamination relative to this limit. A new chemometric
approach, the bootstrap-aggregated (bagged) decision tree, was
also tested. This method was able to classify 79% of the maize
samples at the EU regulatory limit for deoxynivalenol. The
model also revealed a relationship between varieties of maize
and types of fungal infection. This may explain the low classifi-
cation accuracy. Employing two maize varieties reduced classi-
fication accuracy from 90% to 79%. Removing samples infected
with Fusarium verticillioides from those infected with Fusarium
graminearum and Fusarium culmorum improved classification
accuracy from 73% to 79%.

Grains can be contaminated with aflatoxins. Ge et al. (2016)
performed quantitative determination of aflatoxin in grains using
terahertz spectroscopy and chemometrics (PLSR, PCR, SVM,
and PCA-SVM). The results indicate that linear regression mod-
els (PLSR and PCR) are more accurate for lower aflatoxin con-
centrations (1–50 mg/ml) (R2 D 0.983 for PLSR; R2 D 0.982 for
PCR; R2 D 0.963 for SVM; R2 D 0.947 for PCA-SVM), whereas
nonlinear models (SVM and PCA-SVM) are more accurate for
higher aflatoxin concentrations (1–50 mg/l) (85% for SVM; 94%
for PCA-SVM; 50% for PCA; 35% for PLS).

Saidi and Mirzaei (2016) compared the classical HPLC
method with the spectrofluorimetric method in combination
with artificial neural networks to determine ochrotaxin content
in wheat and rice products. The R2 coefficients were 0.995 for
the training and prediction set and 0.991 for the test set. The
results of their study show that spectrofluorimetric spectra
matrices and ANN can successfully be applied for the determi-
nation of ochratoxin. Moreover, this method is less time con-
suming and simpler than conventional HPLC.

Wiliams et al. (2012) investigated the use of NIR-HSI and
multivariate analysis to monitor changes in maize kernels
infected with Fusarium verticillioides. Germ-up and Germ-
down samples were divided into two major groups: kernels to
be sterilized and kernels without sterilization. PCA revealed the
presence of three clusters, discriminating control samples, sam-
ples inoculated 17 h, and samples inoculated for 20–90 h. How-
ever, due to significant differences, it was impossible to build a
single PLS model for all treatments and the PLS models were
evaluated individually. The data matrix was composed of 32
objects. However, in most cases greater accuracy for predicting
the degree of fungal infection was obtained with a lower num-
ber of objects (8 of 32). In all treatments R2 D 0.98. However,
when 32 objects were considered, only the sterilized germ-up
sample revealed an identical R2 D 0.98 while for the others
R2 D 0.83–0.92. It is therefore possible to build PLS models to
predict the degree of contamination in kernels, but the number
of spectra should be limited and samples should be quite simi-
lar to each other.

Chemometrics in quality evaluation of olives and olive oils

Olive oils are divided into two groups: virgin olive oil (VOO)
and extra-virgin olive oil (EVOO). EVOO is considered higher
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quality due to its health and sensory aspects, as well as because
of its oxidative stability. These characteristics are related to the
fatty acid composition of EVOO and to the presence of several
minor compounds, such as volatile compounds, polyphenols,
tocopherols, and squalene. Given that high quality entails high
price, EVOO is often adulterated by the addition of cheaper
oils: seed, corn, soybaean, sunflower and nut oils, refined or res-
idue olive oils, or synthetic olive oil-glycerol products. More-
over, the properties of olive oils are influenced by the
conditions of cultivation, harvesting, and technological process-
ing (Arvanitoyannis and Vlachos, 2007; G�omez-Caravaca et al.,
2016).

Gurdeniz and Ozen (2009) used Mid-IR spectroscopy and
chemometrics to detect EVOO adulterated with vegetable oils
(rapeseed, cottonseed, and corn-sunflower binary mixture).
PCA separated authentic from adulterated EVOO. However,
PCA was not able to group samples with low levels of adulter-
ants (2% and 5%), and these samples were excluded. PLS-DA
correctly classified most samples but several could not be classi-
fied as either pure or adulterated. However, a Cooman’s plot
based on the SIMCA model was able to classify these nonmem-
bers, making the PLS-DA model more reliable. Quantification
of adulterated oil was performed using a PLSR model. The
model showed high predictive ability for all types of adulterants
(97.9–99.1%) with an R2 coefficient of around 0.99 for the cali-
bration set and an R2 coefficient of between 0.93 and 0.98 for
the validation set. However, samples with adulterant levels of
2% were excluded. Rohman et al. (2014) employed FTIR spec-
troscopy to determine the authenticity of EVOO. DA was used
to differentiate pure EVOO from EVOO adulterated with
canola oil. Only one unadulterated sample was misclassified.
PLSR and PCR were used to quantify canola oil in EVOO.
PLSR (R2 D 0.999) revealed slightly better quantification ability
than PCR (R2 D 0.901–0.998). For PLSR the validation set R2

coefficient was 0.997.
According to the Commission Implementing Regulation,

2013 EU No. 1335/13, labels must include information on the
geographical origin of olive oils. Melucci et al. (2016) studied
the use of flash gas chromatography electronic nose and che-
mometrics to verify that the geographical origins of olive oils
were the same as those given on the labels. PCA separated
100% Italian EVOO and non-100% Italian EVOO. Some sam-
ples labeled non-Italian were located in the centroid, because
they may have contained a small amount of Italian EVOO.
A PLS-DA model provided good discrimination between 100%
Italian and non-100% Italian olive oils, with determination
coefficients of 0.833 and 0.834 for the calibration and validation
sets, respectively.

Gouvinhas et al. (2015) differentiated between EVOO
obtained from three different olive cultivars (Olive cv,
Cobrançosa, and Galega) at several stages of maturation (green,
semi-ripe, and ripe) using FTIR spectroscopy and chemomet-
rics. FDA provided 100% correct classification for the calibra-
tion set and lower accuracy (73.6%) for the cross-validation set.
The highest classification accuracy was observed for ripe
EVOO (87.5%) and the lowest for semi-ripe EVOO (62.5%).
A PLSR model was used to predict the contents of total phe-
nolics, o-diphenols, and flavonoids, as well as antioxidant activ-
ity based on FTIR spectra. The lowest R2 coefficient was

observed for antioxidant activity (0.93 for the calibration set
and 0.88 for the validation set), whereas the highest R2 coeffi-
cients were observed for o-diphenols (R2 D 0.99) and flavo-
noids (R2 D 0.99 - calibration set; R2 0.98 - validation set).

The cultivars of olive trees determine the quality of olive oils.
Aouidi et al. (2012) analyzed the olive leaves of five Tunisian
cultivars using FT-MIR and chemometrics. PCA did not dis-
criminate all varieties. Overlapping between Chemlali and
Ch�etoui leaves was observed. A PLS-DA classification model
was constructed, with high R2 D 0.96–0.98. Ch�etoui, Zarrazi
and Meski cultivars were classified with 100% accuracy,
whereas only 80% and 40% of Chemlali and Sayali cultivars
were classified correctly.

Chemometrics in quality evaluation of coffee

The most important species of coffee plant are Coffea arabica
and Coffea canephora. These are the source of beans commonly
known as Arabica and Robusta. Arabica beans are mild and
aromatic, while Robusta beans are harsh and bitter and contain
more caffeine. Robusta beans are easier to harvest. Arabica
beans are cultivated on mountains; Robusta plantations are sit-
uated at lower altitudes. Arabica beans are 40-50% more expen-
sive than Robusta beans. There is interest, therefore, in
developing chemometric methods to distinguish between these
two varieties of coffee. According to the literature, it is possible
to identify coffees based on their contents of volatile com-
pounds (Huanga et al., 2007; Ribeiro et al., 2009, 2012), poly-
phenols (Ribeiro et al., 2012), amino acids and caffeine (Mart�ın
et al., 1998).

Mart�ın et al. (1998) differentiated Arabica and Robusta
green coffee varieties based on their contents of chlorogenic
acid, caffeine, trigelline, amino acids, aqueous extract, and poly-
phenols. PCA did not precisely distinguish between the varie-
ties of coffee. However, chlorogenic acid, caffeine and
polyphenols were found to be good markers. Better separation
was achieved using CA. KNN analysis grouped samples with
97.6% accuracy (K D 1–2). When K D 3–5, classification accu-
racy decreased to 92.7%. This paper presents the use of the
nonparametric classification procedure KNN. Use of KNN is
justified because the variables do not have a normal distribu-
tion. A common mistake is to apply techniques designed for
normal distributions without having first verified whether the
distribution is normal.

Recent studies report separation of Robusta and Arabica
green coffee varieties using PCA according to lipophilic and
aqueous extracts. Analysis of 1H NMR spectra further revealed
16-O-methylcafestol (16-OMC) and kahweol as important
markers for Robusta coffee and Arabica coffee, respectively
(Monakhova et al., 2015). Robusta and Arabica beans may be
differentiated irrespective of the degree of roasting. PLS-DA
has been reported to provide around 98% classification accu-
racy (100% for Arabica and 95% for Robusta). SIMCA also
showed high sensitivity and specificity (93% and 96% for Arab-
ica and 77% and 96% for Robusta) (De Luca et al., 2016).

Coffee can be fraudulently mixed with less expensive materi-
als, such as spent coffee grounds, coffee husks and other roasted
grains. Coffee is generally considered impure when the adulter-
ation level is more than 10 g/100 g coffee. Reis et al. (2013)
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used FTIR spectrum data and employed PCA to differentiate
pure coffee from coffee contaminated with husks, corn, barley
and spent coffee grounds. Overlapping was observed between
roasted corn and barley, probably due to similar starch content.
LDA was also performed and 100% separation of coffees
achieved. PLSR can also be used to build a model for predicting
the content of barley in coffee (for the test RMSE D 1.4% for
external set RMSE D 0.8%) (Ebrahimi-Najafabadi et al., 2012).
On the basis of the results of FTIR-ATR spectroscopy, a PLSR
model successfully predicted adulteration levels of between
0,5% and 40% with high R2 coefficient (R2 D 0.99 for calibra-
tion and validation set) and low error value (RMSEC D 0.69%,
RMSEP D 2.00%) (Reis et al., 2016).

The flavor of coffee is determined by volatile compounds.
These are usually identified using GC-MS. However, due to
their number and complexity accurate separation is very diffi-
cult. Coffee producers enhance the flavor of their products
using various additives, such as coconut flavoring, and this mis-
leads consumers. Huanga et al. (2007) analyzed the chemical
composition of coffee flavor and coffee enriched with coconut
aroma and classified coffees using PCA. Coffee samples from
the same factories were shown to have the same compositions
of volatile compounds, with similarity greater than 0.9104.
Other studies report the application of chemometrics for pre-
dicting the sensory characteristics of Arabica coffee. Volatile
compounds were determined using SPME-GC. Based on the
chromatogram, PLS models were constructed (Ribeiro et al.,
2009; Ribeiro et al., 2012). SPME-GC was found to be an effec-
tive method for predicting the sensory characteristics of coffee,
including acidity, bitterness, aroma, purity, body and overall
quality. The RMSEP values were 0.27 (acidity), 0.33 (bitterness
and flavor), 0.41 (cleanliness), 0.34 (body), and 0.35 (overall
quality). The results show a correlation between evaluations
made by a sensory panel and the presence of volatile com-
pounds in Arabica coffee beans (Ribeiro et al., 2012).

Chemometrics in quality evaluation of teas

There are five basic types of tea: green, white, black, red (Pu-
erh), and blue-green (cyan, Oolong). White tea is composed of
buds and young leaves, which, over a relatively short period of
plant growth, are protected from light to prevent the chloro-
phyll synthesis. During the withering stage, there is a delicate
process of fermentation and drying. Green tea is obtained from
older leaves, which are dried immediately after harvesting, in
order to prevent the spontaneous fermentation process. As a
result, the leaves retain their green color and properties similar
to fresh tea. Turquoise tea is also obtained from older leaves,
but the fermentation process is controlled. Depending on the
degree of fermentation, the leaves may be pale green, brown,
red or black. Black tea is made in a relatively long process of
enzymatic fermentation. In the case of red tea, the dried leaves
are fermented again by microorganisms, changing its chemical
composition.

Teas are known to differ in terms of their content of amino
acids (Alc�azar et al., 2007; McKenzie et al., 2010), sugars
(Seetohul et al., 2006), minerals (Fern�andez-C�aceres, et al.,
2001; Moreda-Pineiro et al., 2003; McKenzie et al., 2010),
volatile compounds (Seetohul et al., 2006) and polyphenols

(catechins) (Seetohul et al., 2006). The chemical composition of
tea affects the flavor of the brew (Seetohul et al., 2006). There is
also a correlation between the composition of tea and its coun-
try of origin (Fern�andez-C�aceres, et al., 2001; Moreda-Pineiro
et al., 2003). A further relationship has been found between the
content of individual amino acids and sugars and the quality of
teas (Ding et al., 2002).

McKenzie et al. (2010) analyzed the concentration of miner-
als (Al, Ba, Ca, Cu, Fe, Mg, Mn, Ni, P, K, Na, Sr, Zn, and S) in
five types of tea. It was found that white tea can be identified
based on its content of P, Sr, Zn, and Al, and red tea mainly on
the basis of its Na and Mg content. Black tea differs from white,
red and turquoise tea in terms of Mg and Zn content, and from
green tea in terms of K content. LDA was performed based on
the concentrations of these markers. Overall classification abil-
ity was 81% and the best separation was obtained for Oolong
teas (100%) ant the lowest for black and green teas (64%). The
other types of tea were not precisely separated. Better results
were obtained using PNN. Overall classification ability was
97%. PNN successfully separated white, green, Oolong, and
Pu-erh teas with 100% accuracy and black teas with 96% accu-
racy. PNN is a type of ANN. However, it requires less training
time because the smoothing factor is the only control parame-
ter which needs to be optimized. The network must be updated
for each new training set, but the smoothing factor does not
require adjustment. Another advantage is that the network
structure is selected automatically, making the process easier.

Attempts have also been made to apply chemometric meth-
ods for the classification of teas based on concentrations of
amino acids. Accurate discrimination of teas was not achieved
using PCA, with only white and green teas constituting sepa-
rated groups. However, white and red teas have been distin-
guished using LDA with recognition ability of 100% for white,
green, and Pu-erh teas, 90.48% for black teas and 83.33% for
Oolong teas. KNN provided recognition ability of 100% for all
teas except black (66.66%). Using ANN (BP-MLP) 100% classi-
fication ability was achieved. ANN is commonly used to solve
nonlinear problems, and in this case it is possible that the data
structure was nonlinear (Alc�azar et al., 2007). Fern�andez-
Caceres et al. (2001) similarly report that PCA failed to group
black and green teas, while LDA enabled correct identification
with recognition ability of 97.8% and prediction ability of
93.5%. ANN provided better recognition ability of 100% and
prediction ability of 95.6%.

PCA has been employed to group teas from different coun-
tries in terms of their chemical composition. In a group of 18
African teas, 4 Asian teas were included, and 6 African teas
were included among 36 Asian teas. Similar results were
obtained using CA. Accuracy was lower using SIMCA, with
only 83.3% and 88.9% African and Asian teas classified cor-
rectly. Better results were obtained with LDA 100% of African
and 97.2% of Asian teas were correctly classified. Only one
Asian tea was incorrectly classified (Moreda-Pineiro et al.,
2003).

Identification of teas (Oolong, green, Houji, Kenya, Assam,
Ceylon, and Japanese black) can be performed based on their
content of polyphenols. PCA revealed that Assam and Ceylon
teas were very close in the variance space, reflecting their close
geographical origins. Kenyian, Japanese and black teas were
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distant from each other, because they are cultivated in regions
with very different climates (Seetohul et al., 2006). Recent stud-
ies report the use of HPLC coupled with chemometrics for
quality evaluation of Deepure instant pu-erh tea, produced by
different manufacturers. Differences were observed in terms of
the concentration of catechin derivatives. Chemometric tools
(HCA, PCA, and PLS-DA) gave satisfactory results for the dif-
ferentiation of teas according to variety and manufacturer
(Wang et al., 2016).

Adulteration practices are common in the production of tea.
Some producers add talcum powder, which makes tea more
attractive and hides quality defects. Studies suggest a link
between the use of talc and cancer (Neil et al., 2012). Li et al.
(2016) report satisfactory results using chemometric methods
for the detection of tea adulterated with talcum powder. Using
PCA, pure tea samples were clearly separated from those adul-
terated with talc. However, PCA was not effective at separating
tea samples with different doses of talcum powder.

Chemometrics in quality evaluation of alcoholic drinks

The composition of wine, and therefore also its taste and flavor,
are affected by number of factors, such as grape variety, climate
and soil conditions, method of rape cultivation and production
methods. The region of origin is therefore extremely important.
Chemometric techniques are often used to differentiate wines,
particularly in terms of their origin.

Gonz�alez-Centeno et al. (2015) used PLS-DA to group
Spanish wines (2009 and 2010 vintages) from two wine-pro-
ducing regions: Binissalem and Pla i Llevant. Discriminant
analysis was conducted based on differences in soil composi-
tion (content of Pb, clay, sand, and carbonate), climatic factors
(rainfall, maximum, and minimum air temperature) and the
location of the vineyard. For each of the wine vintages, the
researchers reported a correct classification rate of 95%.

R€omisch et al. (2009) used RDA and PLS-DA methods
to analyze the chemical composition of Hungarian, Czech
and Romanian wines, and to divide red and white wines
into groups depending on their countries of origin. Correct
classification rates of 88 and 100% were achieved. Capron
et al. (2007) classified authentic and commercial wines, also
from Hungary, the Czech Republic and Romania, using
PLS-DA and SVM. Differentiation was more difficult in the
case of commercial and authentic white wines than with
authentic and commercial red wines. Difficulties in classify-
ing commercial wines are probably due to the influence of
technological processes on their chemical composition. Use
of SVM was more effective than PLS-DA and classified
wines slightly better according to a unique set of variables.
(Capron et al., 2007). SVM is used to solve nonlinear prob-
lems, whereas PLS-DA is used for linear problems. SVM is
based on the kernel function. However, to build a suitable
model variable selection must be performed using other
methods.

White and red wines originating from different wine-grow-
ing regions can also be classified and characterized according
to their contents of alcohol, saccharides, amino acids, organic
acids, volatile compounds, polyphenols and tracers. Ragone
et al. (2015) successfully analyzed white and red wines using

PCA and PLS-DA. PLS-DA as supervised technique improved
separation of white and red wines. The wines differed mainly
in terms of their contents of organic acids (lactic acid, succinic
acid, acetic acid, malic and citric acid), amino acids (arginine,
alanine, leucine and isoleucine) and isopenthanol. Other stud-
ies report the use of PCA for classifying red wines (2007 and
2008 vintages), based on the antioxidant activity, acidity, sac-
charides, phenolic compounds, including flavonoids and tan-
nins. Of the parameters investigated, the best marker was
tannin content Using PCA, it was possible to explain 81.36% of
the total variance, but PCA did not separate wines of different
vintages. This suggests that PCA is not always an appropriate
technique for evaluating similarities/dissimilarities between
samples. (Lima et al., 2011).

The levels of volatile compounds in wines produced
using yeast depend on the variety of grape. Grape varieties
differ in terms of amino acid content, sugar and water. The
content of volatile metabolites may also affect the sensory
characteristics of wine. Using a PLSR model, Hern€andez-
Orte et al. (2002) found a relationship between content of
different amino acids in wines and the content of volatile
compounds. These results show the effect of different grape
varieties on the profile of volatile compounds in wine. How-
ever, it should be mentioned that the regression coefficient
was quite low for most volatile compounds (0.49–0.96),
with the highest observed for methionol (Rv D 0.96). Based
on analysis of various elements (Zn, Sr, Pb, In, Cu, Ni, As,
Cd, and P), 100% classification accuracy was achieved for
sparkling wines (cava and champagne) using LDA and
SIMCA chemometric techniques (Jos et al., 2004).

Chemometrics may be used for the classification not only of
wines but also of different alcoholic beverages. On the basis of
NIR spectrum analysis in combination with chemometric
methods (PCA, SIMCA), Pontes et al. (2006) classified various
types of alcoholic beverage (whiskey, brandy, rum, and vodka)
with 100% efficiency. They were able to distinguish classes of
alcoholic beverage, adulterated by the addition of water, metha-
nol or ethanol.

Efforts have been made to differentiate between types of
beer (lager, dark, and low-alcohol) using PCA based on
mineral content (Zn, P, B, Mn, Fe, Mg, Al, Sr, Ca, Ba, Na,
and K). Much better separation was achieved using LDA.
Beers were grouped with recognition ability of 94% (Alc�azar
et al., 2002). Lager beers sold under the same brand but

Figure 1. Number of search results for articles related to chemometrics and food
on Web of Science, Scopus and PubMed published between 2005 and 2015.
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produced in different breweries were analyzed using PCA
and LDA. These beers were found to have different flavors
and clearly differed in terms of their chemical composition
(content of esters, alcohols, aldehydes, ketones, sulfur com-
pounds, petroleum and diacetyl). Using PCA, the first two
components explained only 37% of the total variance. How-
ever, when LDA was performed on the first seven principal
components, it was able to explain 66% of the total variance
and provided 89.6% classification accuracy (Vera et al.,
2011). Rendall et al. (2015) studied changes in the content
of volatile compounds including esters, higher alcohols and
selected organic acids (caprylic acid, capric acid, and acetic
acid) in Portuguese beers over one year of storage. After
seven months, differences in the chemical composition of
the beers were observed using PCA and HCA.

Conclusion

As an alternative to standard statistical methods, chemometrics
offer effective tools for food quality analysis and control, with
fast and inexpensive analysis of experimental results. According
to Web of Science, Scopus, and PubMed, in recent years there
has been increasing research interest into such applications of
chemometrics (Fig. 1).

Chemometrics can be used to analyze a wide range of food
groups (of both animal and plant origin and beverages) and
beverages. The main purposes of application of chemomerics
are: authentication, adulteration detection, quality control, dif-
ferentiation, and determination of nutrition quality (Table 2).
The results presented in this review indicate that chemometric
methods can be used for differentiation and classification of
food products according to their geographical origin, botanical
origin, production techniques, and chemical composition, as
well as for the detection of adulterants in foods. Multivariate
techniques can be successfully applied in food microbiology to
evaluate microbial spoilage, identify microorganisms and detect
mycotoxins.

Studies have shown the potential of using multivariate tech-
niques in combination with chromatographic and spectro-
scopic techniques, enabling interpretation of large and complex
data sets. Raman spectroscopy, FTIR, NIR, NMR, HPLC, GC,
and ICP are commonly applied with chemometrics. In recent
years, HSI has also become of great interest.

The most commonly used chemometric technique is PCA.
PCA is often used for classification purposes, despite not being
a classification technique. PCA provides information concern-
ing data structure, explains similarities/dissimilarities between
objects and may also indicate which variables contribute most
to differentiation between objects. In many cases, PCA is the
first step before further supervised analysis, which helps to
select the most differentiating variables. The most frequently
used classification techniques are LDA, PLS-DA, KNN, and
SIMCA. However, in recent years there has been growing inter-
est in artificial neural networks, which could provide promising
classification models. ANN shows much better classification
ability in comparison to other classification models. The most
commonly used quantification model is PLSR, which is mostly
applied in combination with spectroscopic techniques, espe-
cially FTIR. PLSR is used in quality control to determine levels

of microbial spoilage, mycotoxin content or of adulterants.
PLSR is currently the most accurate quantification model for
general recognition and prediction purposes. However, its sim-
plified optimized models also give encouraging results and thus
need further research.

In conclusion, the implementation of chemometrics for
research into food and beverages requires wide knowledge of
their range of applications and limitations. Building a proper
calibration model is a crucial step in many forms of chemomet-
ric analysis. Several models should also be considered before
choosing the most suitable. Finally, the results should always be
evaluated critically.
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