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REVIEW

Metabolic indices of polyunsaturated fatty acids: current evidence, research
controversies, and clinical utility

Sergio Davinelli� , Mariano Intrieri�, Graziamaria Corbi, and Giovanni Scapagnini

Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy

ABSTRACT
The n-3 and n-6 polyunsaturated fatty acids (PUFA) are among the most studied nutrients in
human metabolism. In the past few decades, prospective studies and controlled trials have sup-
ported the view that the effects of these essential fatty acids are clinically relevant. PUFA profiles
in different blood compartments are reflections of both diet and metabolism, and their levels may
be related to disease risk. Despite widespread interest, there is no consensus regarding which
biomarkers best reflect PUFA status in the body. The measurement of PUFA levels is not straight-
forward, and a wide variety of indices have been used in clinical studies, producing conflicting
results. A major source of heterogeneity among studies is associated with research design,
sampling, and laboratory analyses. To date, the n-3 index, n-6/n-3 ratio, and arachidonic acid (AA)/
eicosapentaenoic acid (EPA) ratio are the most promising biomarkers associated with
PUFA metabolism. Although hotly debated, these indices may be considered at least markers, if
not risk factors, for several diseases, especially cardiovascular events and brain disorders. Here, we
summarize the most updated evidence of n-3 and n-6 PUFA effects on human health, reviewing
current controversies on the aforementioned indices and whether they can be considered valuable
predictors of clinical outcomes.
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Introduction

Fatty acids (FA) can be classified into three categories based
on the number of double bonds present in side chains: satu-
rated FA (SFA, no double bonds), monounsaturated FA
(MUFA, a single double bond), and polyunsaturated FA
(PUFA, �2 double bonds). Moreover, FA can be classified
by their carbon chain length and the position of the first
double bond on methyl terminal (omega; x; or n� FA).
PUFA, mainly categorized into n-3 and n-6 FA, play key
roles in regulating body homeostasis and cannot be pro-
duced endogenously. These FA are important constituents
of cells where they assure the appropriate environment for
membrane protein function, maintaining membrane fluidity
and regulating cell signaling, gene expression and cellular
function (Russo 2009; Catal�a 2013). Dietary sources that are
rich in PUFA include many vegetable oils, nuts, seeds and
certain types of fish. The main consequence of their con-
sumption is to be included in cellular membranes, especially
of platelets, erythrocytes, neutrophils, monocytes, and neur-
onal cells. The impact of PUFA on health and disease has
been of interest for many decades. However, the biological
properties of PUFA are still the focus of considerable atten-
tion as they are thought to play an important role in several
conditions, such as cardiovascular diseases (CVD), cancer,
depression, insulin resistance (IR), and nonalcoholic fatty
liver disease (NAFLD) (Z�arate et al. 2017; Shahidi and

Ambigaipalan 2018; Fedor and Kelley 2009; Delarue and
Lall�es 2016). Numerous studies have reported a variety of
physiological effects of PUFA, and it would appear that n-3
and n-6 PUFA may influence several pathological conditions
associated with metabolic, inflammatory, and oxidative
processes (Calder 2006; Patterson et al. 2012). Nevertheless,
several issues are still debated, including the lack of
a universally accepted biomarker that reflects PUFA status
in the tissues. Although clinical studies have investigated
the response of various biomarkers associated with PUFA
intake, and methodological considerations have also been
published (Fokkema et al. 2002; Harris, Assaad, and Poston
2006; Serra-Majem et al. 2012), we still do not have enough
data in the literature to understand which biomarkers truly
reflect PUFA status. The analytical determination of PUFA
is challenging, mainly because of their biological diversity
and their physicochemical similarity. Moreover, these com-
pounds are produced within the same cascade and they all
are part of a complex regulatory network. Therefore, this
wide spectrum of compounds should be comprehensively
captured to fully characterize their biological activity.
Nowadays, lipidomic provides a powerful tool for the devel-
opment of PUFA biomarkers to study disease states. Methods
currently used include gas chromatography (GC), GC-mass
spectrometry (GC-MS), GC-tandem mass spectrometry
(MS/MS), liquid chromatography-mass spectrometry (LC-
MS), LC-MS/MS, and LC-ultraviolet (UV)-MS/MS. LC-MS/
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MS is currently one of the most powerful techniques for
analysis of lipid mediators due to its high analytical specifi-
city and sensitivity (Yang and Han 2016). Additionally, it is
also necessary to know the reliability of PUFA dietary intake
estimations. There are several biological samples to estimate
PUFA intake. Although erythrocytes and plasma are often
used to assess PUFA level, dried blood spots (DBS) have
become useful tools for quantifying nutrient intakes from
diet as they are noninvasive and easily implemented into
studies of large populations (Marangoni, Colombo, and Galli
2004). Despite this, the assessment of PUFA status using key
FA indices is growing. Clinical and epidemiological studies
suggest that the n-3 index, n-6/n-3 ratio, and acid (AA)/
eicosapentaenoic acid (EPA) ratio may provide valuable
information on nutritional needs, health outcomes, and
long-term disease risk (Fokkema et al. 2002; Harris, Assaad,
and Poston 2006). Therefore, the aim of this manuscript is
to briefly discuss the metabolism of PUFA, describing the
most updated evidence of their effects on human health and

major chronic diseases. Then, given the uncertain clinical
utility of PUFA indices, we also reviewed analytical methods
and the most promising biomarkers that can beused in the
common clinical practice.

Metabolism and dietary sources of n-3 and
n-6 PUFA

Two different pathways exist for the synthesis of the long-
chain n-3 and n-6 PUFA (Figure 1). The simplest members
of each family, linoleic acid (18:2n-6; LA) and a-linolenic
acid (18:3n-3; ALA), cannot be synthesized by humans. The
dietary intake of these essential FA promotes the synthesis
of AA (20:4n-6), EPA (20:5n-3), and docosahexaenoic acid
(22:6n-3; DHA) that regulate diverse homeostatic processes
by acting on the synthesis of bioactive signaling lipids called
eicosanoids. However, n-3 and n-6 PUFA have opposing
effects on metabolic functions in the body. In general,
AA synthesizes the pro-inflammatory eicosanoids, while

Figure 1. Biosynthesis of the principal polyunsaturated fatty acids and their metabolism. LA (18:2n-6) and ALA (18:3n-3) are PUFA obtained from the diet.
Mammals convert LA and ALA to long chain PUFA using a series of desaturation and elongation reactions. Relevant intermediates to synthesize EPA (20:5n-3), DHA
(22:6n-3), and AA (20:4n-6) include stearidonic acid (18:4n-3), eicosatetraenoic acid (20:4n-3), GLA (18:3n-6), and DGLA (20:3n-6). AA and EPA are substrates
for the synthesis of eicosanoid products. These include the various prostaglandins, thromboxanes, and leukotrienes that mediate inflammatory processes. DHA is
metabolized to resolvins and protectins that promote the resolution of inflammation.
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EPA and DHA induce the synthesis of anti-inflammatory
eicosanoids (James, Gibson, and Cleland 2000; Schmitz and
Ecker 2008).

Synthesis of n-3 and n-6 PUFA and production of
eicosanoids

Once consumed in the diet, LA and ALA are converted to
long-chain PUFA by fatty acyl-CoA synthetases, D6- and
D5-desaturases, and their respective elongases designated as
elongation of very long FA (ELOVL). In particular, LA can
be converted in c-linolenic acid (18:3n-6; GLA) by the
action of the enzyme D6-desaturase, and GLA is elongated
to form dihomo-GLA (20:3n-6; DGLA), the precursor of
prostaglandins (PG) of the 1 series. AA can be generated
from DGLA by the action of the enzyme D5-desaturase, and
then AA synthetizes PG of the 2 series (A2, E2, I2, and
thromboxane A2 [TXA2]) by cyclooxygenases-2 (COX-2).
Additionally, leukotrienes (LT) of the series 4 (B4, C4,
and E4) are also synthesized from AA with the action of
lipoxygenases (5-LOX). These AA- derived eicosanoids are
involved in several physiological actions, including pro-
inflammation, pro-platelet aggregation, vasoconstriction, and
immune response (Harizi, Corcuff, and Gualde 2008; Innes
and Calder 2018). By an analogous set of reactions catalyzed
by the same enzymes, ALA undergoes to transformation in
EPA that can be metabolized by COX-2 and 5-LOX to PG
of the 3 series (B3, D3, E3, I3, and TXA3) and LT of the
series 5 (B5, C5, and D6), respectively. Next, EPA can be
elongated again through two elongation cycles where doco-
sapentaenoic acid (C22:5n� 3; DPA) is generated. The bio-
synthesis of DHA from DPA involves elongation and
desaturation, followed by b-oxidation. DHA can be then
metabolized to autacoids such as D-series resolvins (RVD1

to RVD6) and protectins (Neuroprotectin D1 [NPD1]).
EPA- and DHA-derived mediators have potent anti-inflam-
matory activity and serve as specialized mediators that play
an important role in the resolution of inflammation (Cottin,
Sanders, and Hall 2011; Schwanke et al. 2016). As both n-3
and n-6 PUFA compete for the same metabolic enzymes, an
imbalance in the n-6/n-3 PUFA ratio may result in an
altered equilibrium of cell membrane composition, fluidity,
and function, promoting an inflammatory environment
(Figure 2). Therefore, the bioconversion of LA and ALA to
their intermediates depends on the ratio of ingested n-3 and
n-6 PUFA. N-3 and n-6 are both incorporated into
membrane phospholipids when the AA/EPA ratio is between
1/1 to 5-10/1. When the ratio is higher, the incorporation
of AA is preferred, giving rise to pro-inflammatory and
pro-aggregation conditions (Whelan 1996; Harnack, Andersen,
and Somoza 2009).

Dietary intake of PUFA

The PUFA composition of the cell membrane is influenced
by several factors such as genetic variants, physical activity,
and metabolic turnover. However, tissue availability of
PUFA generally reflects those in the diet, affecting the cap-
acity to synthetize long-chain PUFA from their precursors
(i.e., LA and ALA) (Wood et al. 2015). Soybean, sunflower,
and corn oils are all high in n-6 PUFA, and it has been esti-
mated that LA accounts for 80–90% of total dietary PUFA
(Micha et al. 2014). ALA is found in marked amounts in
plant sources, including green leafy vegetables and com-
monly-consumed oils such as rape-seed and soybean oils.
However, as the conversion of ALA to EPA and DHA is
limited, it would be easier to achieve an adequate intake of
these long-chain n-3 PUFA from fish (i.e. salmon, sardine,
and herring oils), the richest dietary source of EPA and
DHA (Williams and Burdge 2006). Many international agen-
cies suggest that long-chain PUFA should provide approxi-
mately 7% of the total calories and the n-6/n-3 ratio should
be no more than 5/1. The European Food Safety Authority
(EFSA) approved several health claims related to the con-
sumption of fish or EPA and DHA, as for the maintenance
of normal level of blood triacylglycerols, normal brain func-
tion and vision, cardiac function and blood pressure. EFSA
has also proposed intake values for the general population:
250mg EPAþDHA; 2 g ALA and10 g of LA per day (EFSA
Panel on Dietetic Products 2010; EFSA 2009). Despite this,
several prospective cohort studies and randomized con-
trolled trials (RCT) provide evidence that populations in
regions that consume a ratio of n-6 to n-3 PUFA closer to
1/1 have fewer chronic diseases than those in areas that con-
sume mostly Western diets where the n-6/n-3 ratio is
approximately 15/1 (Simopoulos 2006; Harris et al. 2009;
Molendi-Coste, Legry, and Leclercq 2011).

Role of PUFA in health and disease

The importance of the PUFA to human health has been
linked to their involvement in multiple biochemical

Figure 2. Biological effects of an increased n-6/n-3 ratio. The PUFA composition
of the cell membranes is dependent on the dietary intake. Increased consump-
tion of n–6 FA, especially AA (20:4n-6), replaces EPA (22:6n-3) and DHA (22:6n-
3) in the membranes of probably all cells, but particularly in the membranes of
platelets, erythrocytes, neutrophils, monocytes, neurons, and liver cells. The
imbalance of n-6/n-3 ratio due to the high membrane concentration of AA may
induce an increased production of proinflammatory eicosanoids and cytokines
and lead to alterations in the lipid environment of membranes, affecting the
functions of membrane-associated proteins, and thereby altering biological
processes.
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functions, including synthesis of inflammatory mediators,
cell membrane fluidity, intracellular signaling and gene
expression. Long-chain PUFA appear to play a crucial role
in specialized cells and tissues such as brain, retina, heart,
and liver. PUFA are particularly vulnerable to peroxidative
attack and lipid peroxidation is highly deleterious, resulting
in damage to cellular membranes and initiation of lipotoxic-
ity mechanisms. Oxidized PUFA and their metabolites are
implicated in a wide range of human pathologies and
inflammatory conditions. With the evolution in lipidomic
techniques, it has been reported that oxidized lipid media-
tors from long-chain PUFA (e.g., LA and AA) are correlated
with diverse pathological conditions ranging from CVD,
metabolic disorders, and NAFLD (Cruciani et al. 2019;
Dasilva and Medina 2019). Although the interaction between
n-3 and n-6 PUFA and their lipid mediators is complex and
still not properly understood, the amounts of these PUFA in
the body are believed to be very critical in the prevention
and occurrence of chronic diseases associated with dietary
patterns (Kihara 2012; Davinelli et al. 2018a, 2018b).

Brain disorders

Several mental and neurologic disorders are associated with
lipid signaling, metabolism, trafficking, and homeostasis.
DHA is the most abundant n-3 PUFA in mammalian central
nervous system (CNS), membrane lipids of brain’s gray mat-
ter (�5 g in the human brain, 15–20% total FA), and visual
elements of the retina (Innis 2008). Although the brain con-
centration of EPA is lower than that of DHA, EPA regulates
several processes within the brain, such as neurotrans-
mission, cell survival and neuroinflammation, and thereby
mood and cognition. Low levels of n-3 PUFA have
been associated with poor cognition, depression, anxiety
disorders, and accelerated neurodegeneration in the elderly.
A large number of epidemiological studies and RCT have
suggested that a deficiency of n-3 PUFA may cause mood
disorders, dementia, and eye diseases, increasing the produc-
tion of n-6 PUFA derived pro-inflammatory eicosanoids and
cytokines (SanGiovanni and Chew 2005; Innis 2008; Song
et al. 2016; Deacon et al. 2017).

Nonalcoholic fatty liver disease

NAFLD is rapidly becoming a major public health concern
worldwide. The top four risk factors for NAFLD are obesity,
dyslipidemia, type 2 diabetes (T2DM) and metabolic
syndrome (MetS) (Chalasani et al. 2012). NAFLD affects up
to 40% of the adult population, but this can exceed 85% in
obese individuals (Angulo 2007). Nonalcoholic steatohepati-
tis (NASH) is considered the progressive form of NAFLD
and is characterized by liver steatosis, inflammation, abnor-
mal lipid composition, and different degrees of fibrosis.
These features are associated with the development of IR,
hyperinsulinemia, and n-3 PUFA depletion. A relationship
between NASH and PUFA metabolism is supported by
studies showing an increased dietary ratio of n-6/n-3 and
a lower intake of PUFA among NASH patients (Zelber-Sagi

et al. 2007; Araya et al. 2004), and by lipidomic studies that
demonstrate liver n-3 PUFA depletion and a higher n-6/n-3
ratio in NASH subjects (Puri et al. 2007; Musso et al. 2018).
Lower hepatic n-3 FA levels have also been found to favor
lipogenesis over FA oxidation (Pettinelli et al. 2009). So far,
none of the interventional clinical studies with n-3 PUFA in
patients with NAFLD or NASH have shown improvements
in key prognostic histological features such as hepatocellular
ballooning and fibrosis. However, most trials have shown a
reduction in hepatic fat content (Argo et al. 2015; He et al.
2016). Interestingly, a recent RCT demonstrated that liver
radiographic and histological improvements in pediatric
NASH are produced during DHA-based therapy. The
authors have also found that the ratio between DHA and
AA and its correction by DHA-based treatment is a robust
and useful indicator that needs further investigation in
NASH (Torquato et al. 2019). Whether or not a high dietary
ingestion of n-3 PUFA over a longer-term influences NASH
progression remains uncertain but seems plausible.

Cardiovascular disease

The association between n-3 PUFA and cardiovascular
health was established but the role that the n-6 PUFA play
in CVD remains unclear. Recent systematic reviews and
meta-analysis have yielded conflicting results, however, it is
well known that n-3 PUFA can regulate cholesterol levels,
adipocytes metabolism, lipogenesis, inflammation, blood
pressure, thrombosis, and arterial stiffness, thus minimizing
the onset of CVD (Kwak et al. 2012; Rizos et al. 2012;
Colussi et al. 2017; Tortosa-Caparr�os et al. 2017).
Population studies still consistently show that a low n-3
PUFA status is associated with an increased risk of CVD
and cardiac death (Skeaff and Miller 2009; von Schacky
2015). As mentioned, there is conflicting evidence whether
increasing or decreasing n-6 intake results in beneficial
effects on CVD. A recent meta-analysis of 30 prospective
cohort studies in 68 659 participants found that higher
in vivo circulating and tissue levels of LA and AA were
associated with a lower risk of major cardiovascular events.
In contrast, numerous studies have reported that high
levels of n-6 PUFA have a pro-inflammatory effect by
increasing the production of 2-series PG and 4-series LT.
Consequently, increased intakes of n-6 PUFA may poten-
tially worsen CVD risk (Maki et al. 2018; Marklund et al.
2019). N-3 PUFA are well-known for their hypotriglyceri-
demic effect and cholesterol-lowering activities. Most of the
results on triglycerides are obtained from a combined effect
on inhibition of lipogenesis and prompt FA oxidation in
the liver. Plasma cholesterol-lowering activities are due to
the suppression of cholesterol biosynthesis enzymes in the
hepatic tissue (Jump et al. 2005; Sugiyama et al. 2008).

Cancer

PUFA play many key roles in all of the basic processes
essential for tumor development (Abel, Riedel, and
Gelderblom 2014). Several in vitro and animal studies have
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established that n-3 and n-6 PUFA have effects on cancer
cells, by influencing proliferation, inflammation, immune
response, and angiogenesis (Berquin, Edwards, and Chen
2008; D’Eliseo and Velotti 2016). Notably, a low ratio
of dietary n-6/n-3 PUFA is associated with reduced risk of
several types of carcinogenesis. In race/ethnicity-specific
analyses, increasing dietary ratio of n-6/n-3 FAs is correlated
with higher prostate cancer risk among white men, but not
among black men (Williams et al. 2011). Despite this, other
epidemiological studies focusing on anticancer properties
of n-3 PUFA have reported inconsistent results (Manson
et al. 2019). However, the assessment of PUFA in blood and
other body fluids may be useful to prevent certain types of
cancer and monitor the efficacy and toxicity of anticancer
treatment (Zhang et al. 2017).

PUFA indices

There is a growing interest in understanding the relation-
ships between PUFA status and clinically important health
outcomes. Concentrations of PUFA in the blood (i.e., whole
blood, plasma, serum, and red blood cells [RBC]) reflect
both dietary intake and biological processes (Hodson, Skeaff,
and Fielding 2008; Davidson 2013). However, the measure-
ment of PUFA levels is complex and a wide variety
of biomarkers and methodological approaches have been
used in experimental and clinical research. There are several
reasons why PUFA analyses are challenging. First, these FA
are a heterogeneous class of lipids typically organized into
groups based on carbon chain length and orientation
of the double bonds. Then, there are several biological
materials for the measurement of PUFA, each with specific
advantages and disadvantages, from whole blood to blood
cells (red, white or platelet) to whole plasma or plasma
lipid classes or even adipose tissue (Hodson, Skeaff,
and Fielding 2008). Adipose tissue is generally considered
the best source for assessing long-term PUFA intake.
Erythrocytes may be a useful marker as they can provide
an indication of the previous 120-day intake of long-chain
PUFA. Plasma reflects the intake of FA over the past few
days or more (Serra-Majem et al. 2012). PUFA are known
to be involved in various physiological and pathological
processes, therefore, it is difficult to define an “optimal”
status or level that can be clinically used as a risk factor
for a disease or as a diagnostic marker of disease. Finally,
there are several analytical techniques that can be used,
from enzymatic methods to lipidomic analyses. This issue
has led to considerable confusion on the measurement
of PUFA status, avoiding a standardization of research
protocols with laboratories reporting individual results.
However, over the last decade, MS-based lipidomic
protocols offer a versatile, sensitive and accurate means of
simultaneously assessing large numbers of PUFA-derived
lipid mediators found in a single sample, and in a variety
of biological samples (Zhao et al. 2015; Okada et al. 2018).
These aspects are discussed in the next paragraphs, along
with the main PUFA indices, which seem to be crucial to
monitor clinical outcomes.

The n-3 index

The n-3 index was defined as the amount of EPA plus DHA
in RBC membranes expressed as the percentage of total
RBC membrane FA (Harris and Von Schacky 2004). It was
originally suggested as a marker of increased risk for death
from coronary heart disease (CHD), but it can also be
viewed as a risk factor for several diseases. The RBC appear
to be the preferred sample type in which to assess the n-3
index. Erythrocytes were chosen because numerous studies
have indicated that these cells incorporate dietary EPA and
DHA in a dose- and time-dependent manner (von Schacky,
Fischer, and Weber 1985; Harris and Thomas 2010). It has
also been shown a low biological variability of the erythro-
cyte FA composition (EPAþDHA), which is much lower
than plasma phospholipid or whole blood FA compositions.
Moreover, the content of FA in RBC is easier to measure
than plasma phospholipid FA content, which requires an
extra step to isolate the phospholipid fraction. It should also
be highlighted that neither acute intake of n-3 PUFA, nor
severe clinical events impact on the n-3 index. For all of
these reasons, the n-3 index may be qualified as a “low-
noise” parameter, which is suitable in epidemiologic and
clinical studies (Shearer et al. 2009; Harris et al. 2013a; von
Schacky 2015). Importantly, multiple observational cohort
and interventional studies have shown that erythrocyte
EPAþDHA is correlated to EPAþDHA in cardiac tissue
and a lower n-3 index has been associated with an increased
risk of CHD mortality (Harris 2008; von Schacky 2014). The
n-3 index was chosen by Health Canada for the country’s
national health survey, also achieving a widespread use
in clinical medicine in the US (Harris et al. 2013a; Langlois
and Ratnayake 2015). However, before the introduction of
the n-3 index in the routine clinical evaluation, reference
values must be clearly established in large human studies.

The n-6/n-3 PUFA ratio

The discovery in the late 1970s of the potential health
benefits of the marine n-3 PUFA by Bang and Dyerberg in
Greenland Inuits opened a new era of studies on these FA
(Dyerberg and Bang 1979). The PUFA/SFA (P/S) ratio,
largely adopted until then, became obsolete as a biomarker
of FA intake. The n-6/n-3 PUFA ratio has emerged as a
new index to determine the physiological effects exerted in
the body by n-6 and n-3 PUFA (Simopoulos 2002). Seminal
studies demonstrated that a high proportion of n-3 FA and
low n-6 FA in tissues may be beneficial to health, particu-
larly for CVD (Gebauer et al. 2006; Harris, Poston, and
Haddock 2007). This has led to the assumption that the n-6/
n-3 ratio is useful to measure the balance of PUFA in the
diet. Ratios between 4/1 and 7.5/1 for the n-6/n-3 ratio in
the diet have been recommended, while contemporary
Western diets are characterized by a ratio of around 15/1,
reflecting deficient intake of n-3 PUFA and excessive intake
of n-6 PUFA (Simopoulos 2002; Gebauer et al. 2006). In
this context, several studies have been shown that a dietary
intervention aimed at reducing the dietary n-6/n-3 ratio,
through n-3 supplementation, led to a significant decrease
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in the n-6/n-3 ratio (Leaf et al. 1995; Guebre-Egziabher
et al. 2008). However, in recent years, the complex biochem-
ical pathway of the eicosanoids has become clearer, and it
seems that the class of n-6 PUFA can no longer be simply
considered as pro-inflammatory. Indeed, the biochemical
usefulness of the n-6/n-3 ratio is highly debated, and a
recent individual-level pooled analysis of 30 cohort studies
reported that higher in vivo circulating and tissue levels of
LA and possibly AA were associated with lower risk of
major cardiovascular events (Marklund et al. 2019). These
new findings suggest that the use of this ratio is based on
invalid assumptions and its clinical value may be not
enough to correlate the overall “omega” status of the body
with pathological conditions.

The AA/EPA ratio

The AA/EPA ratio is a potentially more relevant biomarker
of the n-6/n-3 ratio because it focuses specifically on the
two molecules that compete for the conversion to bioactive
eicosanoids. Harris argues that a fundamental conceptual
flaw of the n-6/n-3 ratio is its failure to distinguish between
the PUFA within each class (i.e., between the n-3 PUFA,
ALA, and EPA/DHA, and the n-6 PUFA, LA, and AA).
Indeed, the 18-carbon species have clearly different physio-
logic properties than the 20- or 22-carbon species (Harris
2006). However, the interaction between AA and EPA
is complex and still not properly understood. Despite this,
several findings support the hypothesis that the balance
between AA and EPA is important to regulate the synthesis
of inflammatory mediators (Wada et al. 2007; Rizzo et al.
2010). Although less common than n-6/n-3 ratio, the EPA/
AA ratio has been identified as a useful, simple, and reliable
marker in a number of clinical settings. Importantly, this
ratio has been shown to be a sensitive marker of cardiovas-
cular risk as total cholesterol, low-density lipoprotein choles-
terol (LDL-C), and triglycerides (Nelson and Raskin 2019;
Preston Mason 2019). Additionally, a number of studies
reviewed by Nelson and Raskin have found that the AA/
DHA ratio is a less valuable marker of cardiovascular risk,
suggesting that EPA may be superior to DHA for the pre-
vention of CVD (Nelson and Raskin 2019). A limitation of
the AA/EPA ratio is that a clinically useful threshold for
identification of at-risk patients has not been clearly defined
in large and prospective studies. This is complicated by
the fact that different geographical regions have different
AA and EPA content due to different diets, which affects
not only the AA/EPA ratio, but also the cardiovascular risk.
Moreover, most of the studies on this ratio have been con-
ducted in Japan and, accordingly, there is a lack of data in
Western populations (Nishizaki, Shimada, and Daida 2017;
Nelson and Raskin 2019).

Measurement of PUFA

The specifics of the methods have been the subject of mul-
tiple articles and can only be summarized here (Brenna
2013; Brenna et al. 2018). Each procedure involves storage,

extraction, separation, identification and quantification
stages. Recently, there has been an attempt to establish con-
sensus and best practices for FA determinations in samples
used for clinical studies. Although there is no a gold stand-
ard in PUFA measurement, it was highlighted that the type
of research could vary and this needs to be considered in
the analytical choices. It was established that the analytical
choices need to be well justified, especially for; (1) sample
collection including the type of sample and the storage con-
ditions, (2) lipid extraction/isolation and FA derivatization
(e.g., methylation to improve analytical sensitivity), (3)
instrument analyses such as GS coupled to flame ionization
detection (FID) or MS, and (4) data analysis and reporting,
including the number of FA to report and the manner/units
to express the data (Brenna et al. 2018). The measurement
of PUFA indices in human tissues is one of the more
demanding nutritional analytic procedures associated with
disease risk and prevention. The association between dietary
PUFA and health outcomes can be determined from food
frequency questionnaires (FFQ). In many cases, however,
the correlation coefficients between PUFA in biological sam-
ples and dietary intake of PUFA from different FFQ were
not similar. Several investigators have used adipose tissue
obtained by percutaneous biopsy, but this procedure is inva-
sive and time-consuming. Currently, analysis of PUFA and
their mediators can be performed using various methodolo-
gies: enzyme-linked immunosorbent assays (ELISA) and
radioimmunoassays are popular but can measure only one
metabolite at a time, are not always selective, can be subject
to cross-reactivity, and are available only for certain lipids
(Kangani, Kelley, and Delany 2008; Ostermann, Willenberg,
and Schebb 2015). Recent advances in MS have underpinned
the development of lipidomic, allowing the simultaneous
qualitative and quantitative assessment of numerous lipid
species, including PUFA. Today, LC-MS/MS, in combination
with high-resolution instruments, is the most powerful tool
to measure and elucidate the structures of lipid mediators
derived from PUFA. In general, measurement of PUFA and
their indices is preferred in RBC membrane phospholipid,
as it displays less variability than measurement in plasma
due to limited exchange between plasma and cells (von
Schacky, Fischer, and Weber 1985; Harris et al. 2013a). In
clinical research, the determination of RBC membrane
phospholipid PUFA composition is a standard diagnostic
procedure for evaluating PUFA indices and their association
with different pathologies, particularly CVD and NAFLD.
This procedure provides information about the long-term
dietary intake of PUFA and their biosynthetic conversion to
eicosanoids (Poppitt et al. 2005; Nishizawa et al. 2006). For
example, RBC lipidomic to investigate membrane PUFA
composition represents a powerful tool to diagnose lipid
abnormalities in NAFLD patients and, therefore, assess
liver parameters associated with lipotoxicity (Svegliati-Baroni
et al. 2019). However, the determination of PUFA in RBC is
a long and expensive method, and requires invasive venous
blood collection, complex storage and extraction. Rather
than collecting and working with venous blood, DBS
technology offers a simple and convenient sample collection
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option. A seminal study by Marangoni et al. described an
assay for rapid profiling of the FA in whole blood using
a filter paper based on DBS. These authors claimed that
this method is sufficiently sensitive to detect changes
in blood FA levels associated with lifestyle and dietary
factors (Marangoni, Colombo, and Galli 2004; Marangoni
et al. 2007).

Analytical techniques in lipidomic

Lipidomic emerged more than 15 years ago, and its progress
has depended directly on the advances made in analytical
technologies, particularly GC and LC. These advances allow
to detect changes in lipid metabolism, pathway modulation
or biomarkers and determine how these are associated with
diseases. The ability of GC and LC techniques to be coupled
with MS and the different ionization technologies developed
including electrospray ionization (ESI), has vastly improved
their sensitivity. MS measures the mass-to charge (m/z) ratio
of ionized molecules. MS-based techniques for the analysis
of lipids are different in the absence or presence of LC and
GC prior to MS analysis. They can also be different in their
analytical coverage (e.g., ‘targeted analysis’ focuses on known
lipids, while ‘global analysis’ analyzes the entire lipidome,
detecting every lipid species). Lipidomic has provided
insights into the molecular mechanism underlying the health
benefits of PUFA and their regulatory role in the inflamma-
tory response (Yang and Han 2016). Indeed, lipidomic can
provide a useful approach for profiling classes of bioactive
PUFA mediators derived from AA, such as PG and LT.
PUFA can be analyzed by a range of MS-based methods,
and currently no method dominates the field. Lipidomic
analysis of biological samples includes sample preparation
(i.e., addition of internal standard; solvent extraction; and
derivatization); mass spectrometry-based analysis (i.e., MS
data acquisition); and data processing (i.e., spectral data ana-
lysis and quantification). Although the need to derivatize the
lipids to form volatile species causes limitations such as the
danger of thermal decomposition, GC–MS or GC–MS/MS
has been successfully applied to PUFA and eicosanoid
research in diverse biological matrices including RBC, DBS,
plasma, brain, liver, cerebrospinal fluid, muscle tissues, and
urine (Hewawasam et al. 2017; Dupuy et al. 2016). However,
although GC-MS can be used in many cases, the required
high column temperatures limit its use because many of the
PUFA-derived lipid mediators are thermolabile. LC-UV-MS/
MS can provide spectral information and criteria for those
compounds with specific UV chromophores. In this context,
many lipid mediators derived from PUFA possess conju-
gated double bond systems that are critical components for
their bioactions; each gives a characteristic UV spectrum
(Arita, Clish, and Serhan 2005). The high separation power
of LC (as high-performance LC [HPLC] or ultra-perform-
ance LC [UPLC]) when coupled to MS/MS has been proven
to be an excellent analytical platform for lipidomic assays
with detection limits in the picogram range (Mart�ın-
Venegas et al. 2011). ESI is a low-energy ionization tech-
nique used in MS and applicable to the qualitative and

quantitative analysis of lipid species. It is emerged as one of
the most popular technique for eicosanoids, since it allows
the ionization of these nonvolatile compounds without the
need for derivatization. These metabolites can form positive
and negative ion species; however, most applications can
form negative ion species in high abundance (Murphy et al.
2005). ESI is also easily coupled with LC, allowing the
development of LC–MS assays that combine the separation
capacity of LC (HPLC or UPLC) and sensitivity of MS.
Other techniques, such as matrix-assisted laser desorption/
ionization (MALDI), atmospheric pressure chemical ioniza-
tion (APCI), and nuclear magnetic resonance (NMR), have
also been utilized. The routine use of lipidomic for PUFA
analyses is currently limited by a lack of standardization of
methodological approaches, and a lack of consensus on what
and how to report lipidomic data. Initiatives to standardize
PUFA lipidomic approaches are ongoing and have identified
pre-analytical, analytical and post-analytical challenges
that need to be considered (Burla et al. 2018). Lipidomic
methods and factors affecting sampling conditions, sample
preprocessing and storage as well as selection of study
subjects (particularly in clinical lipidomic studies), and
analysis of chromatogram data have been extensively
reviewed (Maskrey et al. 2013; Jurowski et al. 2017).

Effect of sampling on PUFA indices

There is a surprising amount of controversy regarding the
choice of blood sample to measure PUFA status in clinical
studies. Each sample has its inherent strengths and limita-
tions, so the rationale for choosing the most appropriate
sample should be based on the research design used and the
specific question being asked. Plasma and serum tend to be
collected as the primary blood sample for clinical studies,
each with specific advantages and disadvantages (Brenna
et al. 2018). Interestingly, a recent study by Giusepponi
et al. provides a validated protocol on a new LC-MS/MS
method and optimized sample preparation for the simultan-
eous detection of PUFA, tocopherols and their metabolites
in human plasma and serum (Giusepponi et al. 2019).
Although large human cohort studies measure PUFA levels
in plasma and serum, one of the most common and reliable
method of measuring PUFA indices involves RBC. This
method includes several steps, such as 1) the collection of
whole blood and its separation into RBC by centrifugation;
2) the washing of the RBC to remove cells and plasma con-
tamination; 3) the extraction of the lipids from the RBC and
their separation; 4) the methylation of the RBC lipids for
analysis by chromatography. However, Patterson et al. dem-
onstrated in a controlled supplement intervention study that
the sum of EPAþDHA in RBC, plasma, and whole blood
collected by fingertip increased linearly in these samples
from 85% to 95% for every gram of EPA and DHA con-
sumed (Patterson et al. 2015). There is a growing interest in
the use of DBS sampling, usually obtained from fingertip,
which allows simple and cost-effective logistics in many
clinical settings. It should be highlighted that the simplicity
of this method is particularly useful to measure the FA
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status of large cohorts. It is minimally invasive and
easily understandable to clinicians and general public. For
example, data from epidemiologic and intervention studies
confirm the utility of DBS system for estimating PUFA indi-
ces. The n-3 index has been deduced from analysis of DBS
samples in studies with U.S. soldiers, runners, adolescents,
premature babies, vegans, and cardiac patients (Aarsetoey
et al. 2011; Johnston et al. 2013; Sarter et al. 2015; Baack
et al. 2016; van der Wurff et al. 2016; Davinelli et al. 2019).
Johnston et al. calculated correlation coefficient (CC) and
variation coefficient (VC) of the n-3 index in RBC against
DBS from 49 participants whose samples were collected at
the same visit. They found that CC and VC were 0.96
(p< 0.0001) and 5–6%, respectively. These values reflect a
good correlation and a low variability between RBC and
DBS (Johnston et al. 2013). An earlier study by Bailey-Hall
compared the percentage values for AA in RBC versus DBS,
which were 10.6 and 8.06, respectively. These values were
similar to those recorded by Bell et al., where AA was 13.0
in RBC and 7.3 in DBS. DHA was also closer in these two
studies, being 4.36 in RBC and 2.76 in DBS in the study by
Bailey-Hall, and 4.84 and 2.18 in the study by Bell et al.
(Bailey-Hall, Nelson, and Ryan 2008; Bell et al. 2011). Rizzo
et al. determined AA/EPA in whole blood against RBC,
showing that the AA/EPA ratio in whole blood was corre-
lated with the ratio derived from RBC (Rizzo et al. 2010). In
this study, the R2 value of the AA/EPA ratio was 0.87 for
RBC versus whole blood, while Bell et al. recorded a slightly
higher value of 0.94 for RBC against DBS. Although
capillary blood, when collected via fingertip, is often
contaminated, these findings provide preliminary evidence
that the DBS method may be used for large-scale studies.

Human studies and PUFA indices

Although numerous studies employ FFQ to estimate PUFA
intake exposure, blood-based biomarkers of PUFA is a pre-
ferred approach to estimate circulating levels of long-chain
PUFA and investigate the relationship between PUFA status
and disease.

The n-3 index as marker for human diseases

The n-3 index has been shown to be a stable biomarker of
dietary intake and a valid surrogate of tissue long-chain n–3
PUFA (Harris et al. 2004). As mentioned, this index was
first proposed as a potential risk factor for CHD, especially
sudden cardiac death, and subsequent cross-sectional and
prospective studies have supported its clinical utility (Harris
2007; Jackson and Harris 2018). Blood levels of EPAþDHA
from 10 studies of a meta-analysis conducted by Del Gobbo
et al. were converted to the n-3 index (RBC %EPAþDHA)
by Harris et al. to gain further insight into what levels of
the n-3 index might be linked with higher vs. lower risk for
CHD. The analysis shows that a cardioprotective target level
for the n-3 index appears to be about 8%, and the level
associated with the increased risk for CHD death is <4%
(Figure 3) (Del Gobbo et al. 2016; Harris, Del Gobbo, and
Tintle 2017). These cut-points could be used in the clinic
practice to identify patients at highest risk for fatal CHD.
Recently, Walker et al. developed a model to predict the
effects of long-chain n–3 PUFA supplementation on the n-3
index. Data from 1422 individuals from 14 published n-3
intervention trials were included in this study. Given
850mg/d of EPAþDHA, the model predicted that the final
n-3 index, with a baseline concentration of 4.9%, would be
approximately 6.5% (Walker et al. 2019). The n-3 index is
also a potentially useful marker of NAFLD risk in over-
weight and obese adults and n-3 PUFA supplementation
appears to be effective in the reduction of hepatic steatosis
in adults aged >18 years (Parker et al. 2012, 2015). A recent
study demonstrated an inverse association between n-3
index and NAFLD in older adults, supporting a relationship
between n-3 index and NAFLD. The n-3 index was signifi-
cantly lower in participants with NAFLD compared to those
without NAFLD. However, the inverse association was
found in female but not male participants, suggesting that
sex differences may be an important consideration when
evaluating the efficacy of n-3 PUFA supplementation in the
prevention of NAFLD (Rose et al. 2016). The dietary intake
of n-3 PUFA increased the index value improving the MetS
parameters with a beneficial impact on NAFLD subjects
characterized by a very low level of n-3 index. Notably, the
n-3 index displayed a negative association with metabolic
variables related to MetS such as homeostatic model assess-
ment (HOMA)-IR, cholesterol concentrations of lipoprotein
classes, and intima-media thickness (IMT), indicating that
the n-3 index can be an appropriate predictor for MetS in
NAFLD (Spahis et al. 2018). The n-3 index is also inversely
correlated with major depressive disorders and inflammatory
biomarkers (Baghai et al. 2011; Fontes et al. 2015). An
increase in the n-3 index reduced the risk and the severity
of depressive symptoms in several clinical studies. One of
them found that for each 1% increase in the n-3 index, the
risk of developing depression was reduced (Pottala et al.
2012). Recently, Zhang et al. found an association between
n-3 PUFA supplementation and a lower risk of cognitive
decline in Alzheimer disease (AD) patients (Zhang et al.
2015). This is supported by a study in healthy subjects
where the n-3 index was correlated with cognitive function

Figure 3. Omega-3 index risk zones. The protective target level for the n-3
index appeared to be about 8%, and the level associated with increased risk
of disease is <4%. However, these values have yet to be prospectively tested in
large human studies.
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as well as hippocampal and total brain volume (Pottala et al.
2014). Only few clinical studies used the n-3 index to moni-
tor PUFA metabolism in cancer. However, DHA supple-
mentation was associated with increased levels of n-3 index
in breast cancer patients (Molfino et al. 2017).

Significance of the n-6/n-3 ratio for human diseases

There are controversial data among the few studies that spe-
cifically explored the role of n-6/n-3 PUFA ratio as a bio-
marker of disease risk. Harris argues that the n-6/n-3 ratio
lacks many of the characteristics of a useful metric, both for
interpreting biomarker data and for making dietary recom-
mendations. Additionally, the same author indicates that
there is no clinical evidence that lowering n-6 PUFA intakes,
which will improve the ratio, will result in reduced risk for
CHD. Willet suggests that even though the n-6/n-3 ratio has
been described as an important index associated with
inflammatory pathways, the existing scientific evidence is
inconclusive, and in humans, a high n-6 intake has not been
correlated with high inflammatory marker levels (Willett
2007; Harris 2018). Similarly, a systematic review of RCT
reported no significant association of the n-6 LA with a
wide variety of inflammatory markers, including C-reactive
protein (CRP), fibrinogen, plasminogen activator inhibitor
type 1, cytokines, soluble vascular adhesion molecules, or
tumor necrosis factor-a (TNF-a) (Johnson and Fritsche
2012). However, in the secondary prevention of CVD, a n-

6/n-3 ratio of 4/1 was associated with a 70% decrease in
total mortality. A ratio of 2.5/1 reduced rectal cell prolifer-
ation in patients with colorectal cancer, and a ratio of 2–3/1
suppressed inflammation in patients with rheumatoid arth-
ritis (de Lorgeril et al. 1994; Simopoulos 2002). Although
measured by FFQ, a population study conducted by
Goodstine et al. indicates that an improvement in the n-6/n-
3 ratio may reduce the risk of breast cancer in premeno-
pausal women (Goodstine et al. 2003). Other studies
reviewed by Marventano et al. reported no association
between n-6/n-3 PUFA ratio and breast, ovarian, and colon
cancer (Marventano et al. 2015). Promising results have
been also reported in major depression, suggesting that an
increased n-6/n-3 ratio is involved in the pathogenesis of
mood disorders (Husted and Bouzinova 2016; Berger et al.
2017). Lipidomic analyses coupled with enzymatic activity
and gene expression profiling revealed an increased n-6/n-3
ratio in relation to NASH (Walle et al. 2016; Puri et al.
2009). More specifically, dysregulation in hepatic PUFA
desaturation reactions was associated with the hepatic imbal-
ance between n-6 and n-3 levels, thereby causing preferential
synthesis of n-6-derived proinflammatory eicosanoids and
accumulation of toxic lipids during NASH progression
(Chiappini et al. 2017). In this context, FA elongation and
desaturation processes show defects also in NASH pediatric
patients. Targeted and untargeted lipidomic findings demon-
strate the importance of achieving a better hepatic metabol-
ism of DHA, and consequently of its metabolic counterpart,
the n-6 AA, to treat pediatric NASH with the diet, especially

Table 1. AA/EPA ratio in cardiovascular diseases, depression, nonalcoholic fatty liver disease, and cancer.

Condition Key findings Study authors

CAD � The incidence of MACE in patients who have undergone PCI is significantly
associated with AA/EPA ratio.

� The AA/EPA ratio is one of the risk indicators in patients with angina.

Domei et al. (2012)

Kondo et al. (1986)
ACS � An imbalance in the AA/EPA ratio is a common critical risk factor for ACS in

middle-aged older patients as well as younger adult patients.
� After successful primary PCI, treatment with EPA combined with statin improves

the AA/EPA ratio, reducing cardiovascular events after ACS.

Serikawa et al. (2014)

Nosaka et al. (2017)
MI � PCI patients with higher AA/EPA ratio have a higher risk of periprocedural MI.

� Higher AA/EPA ratio is associated with a higher frequency of fatal arrhythmic
events in the early phase of acute MI.

Suzuki et al. (2014)

Hashimoto et al. (2018)
Stroke � The AA/EPA ratio appears a potential predictive risk factors for ischemic stroke.

� EPA treatment improves AA/EPA ratio reducing the risk of secondary stroke.
Ikeya et al (2013)

Tanaka et al. (2008)
CHF � The AA/EPA ratio may play an important role in preventing left ventricular wall

thickness in patients with diabetes.
� The AA/EPA ratio is an independent predictor of cardiac mortality in patients

with heart failure.
� EPA treatment reduces the AA/EPA ratio, improving left ventricular

ejection fraction.

Okamoto et al. (2015)

Watanabe et al. (2016)

Kohashi et al. (2014)

PAD � The AA/EPA ratio is predictive of PAD diagnosis.
� Higher AA/EPA ratio appear to be associated with a greater risk of major adverse

limb events and death from any cause after endovascular therapy in patients
with PAD.

Fujihara et al. (2013)
Hishikari et al. (2015);
Hiki et al (2017)

Depression � Higher AA/EPA ratio is associated with a greater likelihood of depressive
symptoms in subjects with systemic inflammation.

� n-3 PUFA supplementation ameliorates symptoms in elderly depression by
improving the AA/EPA ratio.

Shibata et al. (2018)

Rizzo et al. (2012)

NAFLD � A healthy diet and physical activity reduced the AA/EPA ratio value,
improving NAFLD

Tutino et al. (2018)

Cancer � An imbalance in the AA/EPA ratio is a significant risk factor for cancer death.
� High levels of the AA/EPA ratio is an inflammatory biomarker in tumor tissue

of metastatic colorectal cancer patients.

Nagata et al. (2017)

Tutino et al. (2019)

CAD, coronary artery disease; AA, arachidonic acid; EPA, eicosapentaenoic acid; MACE, major adverse cardiac events; PCI, percutaneous
coronary intervention; ACS, acute coronary syndrome; MI, myocardial infarction; CHF, chronic heart failure; PAD, peripheral artery
disease; Nonalcoholic fatty liver disease, NAFLD; PUFA, polyunsaturated fatty acid.
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DHA (Torquato et al. 2019). Several cohort studies support
the idea that the n-6/n-3 ratio may be useful to predict
disease risk factors and monitor health outcomes, however,
further clinical research is needed to assess the accuracy and
reliability of this index.

The importance of AA/EPA ratio in human diseases

The AA/EPA ratio has been found to be more closely asso-
ciated with the pathophysiology of several diseases.
Epidemiological and clinical studies have shown that a lower
AA/EPA ratio is associated with decreased risk of coronary
artery disease (CAD) (Kondo et al. 1986; Domei et al. 2012;
Preston Mason 2019), acute coronary syndrome (ACS)
(Nishizaki et al. 2014; Serikawa et al. 2014; Nosaka et al.
2017), myocardial infarction (MI) (Suzuki et al. 2014;
Hashimoto et al. 2018), stroke (Tanaka et al. 2008; Ikeya
et al. 2013), chronic heart failure (CHF) (Kohashi et al.
2014; Okamoto et al. 2015; Watanabe et al. 2016), and per-
ipheral artery disease (PAD) (Fujihara et al. 2013; Hishikari
et al. 2015; Hiki et al. 2017) (Table 1). The potential role
of EPA treatment in modulating the AA/EPA ratio and
reducing cardiovascular risk was suggested in the large,
prospective, randomized Japan EPA Lipid Intervention
Study (JELIS), which randomized hypercholesterolemic
patients to EPA 1.8 g/day for primary prevention of cardio-
vascular events. Treatment with EPA not only increased its
level, but the risk of major coronary events was significantly
reduced in patients with lower AA/EPA ratio (Yokoyama
et al. 2007, Itakura et al. 2011). Recently, higher levels of
AA/EPA ratio were also positively associated with depres-
sion severity, suggesting a potential role for the balance of
AA/EPA in mood disorders. In support, a meta-analytic
review reported that deficits in EPA and DHA are the most
common lipid markers in patients with depressive symptoms
(Lin, Huang, and Su 2010; Scola et al. 2018). Additionally,
the association between AA/EPA ratio and depressive symp-
toms was also examined in a cross-sectional study involving
2,529 Japanese residents in the Hisayama Study. The authors
demonstrated that a higher AA/EPA ratio was associated
with an increased risk of the presence of depressive symp-
toms in individuals with higher CRP levels (Shibata et al.
2018). A study conducted by Rizzo et al. reported that
supplementation with 2.5 g/day of n-3 PUFA for eight weeks
ameliorates AA/EPA ratio and depressive symptoms in
elderly subjects (Rizzo et al. 2012). Furthermore, studies in
humans show that high levels of AA/EPA ratio are corre-
lated with obesity and visceral fat accumulation (Caspar-
Bauguil et al. 2012; Inoue et al. 2013). However, only one
clinical study investigating the usefulness of AA/EPA ratio
in NAFLD. In particular, the combined effect of diet and
physical activity reduced the AA/EPA ratio value, improving
the steatosis of NAFLD patients (Tutino et al. 2018). Finally,
a large-scale prospective cohort study involving 3098 sub-
jects has demonstrated that increased level of the AA/EPA
ratio is a significant risk factor for cancer death in the
general population (Nagata et al. 2017). It was also demon-
strated that high levels of AA/EPA ratio in metastatic

patients induce an inflammatory microenvironment more
susceptible to tumor progression (Tutino et al. 2019).
Therefore, EPA-rich foods may be effective for reducing the
risk and the progression of cancer.

Conclusions

The essential long-chain PUFA play crucial roles in maintain-
ing normal physiological conditions. Recently, there has been
much interest to measure PUFA indices that are assumed to
reflect whole-body activities of enzymes in PUFA biosynthetic
pathways. The indices reviewed here may be useful
biomarkers to investigate the associations between intake
of PUFA and various health outcomes, especially in large
observational studies and clinical intervention trials. Although
these metrics have been significantly associated with the onset
of several diseases, there are concerns regarding their use. At
present, there is no consensus regarding which indices best
reflect PUFA status in the body. Undoubtedly lipidomic has
allowed tremendous advances in understanding and determin-
ing the true importance of PUFA in many physiological and
molecular mechanisms implicated in the establishment of
healthy or diseased status. However, the routine use of PUFA
indices in the common clinical practice is currently limited by
a lack of standardization of methodological approaches. There
is also a myriad of pre- and post-analytic variables that can
affect the final outcomes. To date, n-3 index and AA/EPA
ratio appear more robust biomarkers in a number of clinical
settings and human studies. Conversely, the n-6/n-3 ratio is
still widely debated and conflicting results were reported.
However, the PUFA indices described in this review may be
clinically useful because they meet two important criteria: 1)
they are related to clinical outcomes; and 2) they are generally
modifiable by lifestyle habits such as dietary changes and
physical exercise. Further epidemiological and clinical studies
will help to better define the prognostic value of these bio-
markers and their definitive thresholds for treatment targets.
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