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Fortification of Foods with Omega-3
Polyunsaturated Fatty Acids

BALASUBRAMANIAN GANESAN, CARL BROTHERSEN,
and DONALD J. MCMAHON
Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA

A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests
in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA)
consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements.
Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public
awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial
ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather
PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature
base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on
their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many
foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed
to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or
purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable.
This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA
lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as
unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such
as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative
compounds to reduce and eventually eliminate fishy flavor is important for consumer acceptance of PUFA-fortified foods.

[Supplementary materials are available for this article. Go to the publisher’s online edition of Critical Reviews in Food
Science and Nutrition for the following free supplemental files: Additional text, tables, and figures.]

Keywords PUFA, ω-3 fatty acid, DHA, EPA, fishy flavor

INTRODUCTION

Dietary fatty acids are a primary energy source for higher
mammals. However, beyond providing calories, fatty acids from
foods are also biomolecule precursors and become components
of biological structures such as cell membranes (Hulbert et al.,
2005). As progenitors of a wide variety of biological lipids and
participants of myriad signaling pathways, fatty acids play a
significant role in survival and well being of mammalian life
(Hwang and Rhee, 1999). Fatty acids are usually derived from
hydrolysis of triacylglycerols consumed as part of our diet and
whether from plant or animal source, consist of straight chain,
saturated molecules with single C–C bonds only (Gunstone,

Address correspondence to Donald J. McMahon, Western Dairy Center,
Department of Nutrition, Dietetics, and Food Sciences, Utah State University,
Logan, UT 84322. E-mail: donald.mcmahon@usu.edu

1996), unsaturated fatty acids with one or more double bonds
(C C), or even branched chain fatty acids (Christie, 1995).

Fatty acids with multiple unsaturated double bonds are col-
lectively termed polyunsaturated fatty acids (PUFAs) and have
been shown to provide additional benefits for human health be-
yond energy (Takahata et al., 1998). α-Linolenic acid (ALA) is
the most commonly available ω-3 PUFA through dietary oils
from both plant and animal sources, whereas eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) are available from
marine food sources such as fish and fish oils, and algae. The
molecular functions of PUFAs and their associated health ben-
efits have been extensively characterized (Tapiero et al., 2002;
Ruxton et al., 2004; Fewtrell, 2006). Since humans cannot make
ALA, and both EPA and DHA are synthesized from the precur-
sor ALA by metabolism of dietary lipids, all three PUFAs are
necessarily acquired from various dietary sources. Considerable
efforts have been undertaken to incorporate PUFAs into foods
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OMEGA-3 FATTY ACIDS IN FOODS 99

Table 1 Types of unsaturated fatty acids

Type of fatty acid
Fatty acid Chain length (based on position of Degree of saturation

Fatty acid (IUPAC name) (common name) (number of carbons) first double bond) (number of double bonds)

cis-9-Octadecenoic acid Oleic acid 18 ω-9 1
cis, cis-9,12-Octadecadienoic acid Linoleic acid 18 ω-6 2
all-cis-6,9,12-Octadecatrienoic acid γ -Linolenic acid 18 ω-6 3
cis,cis,cis-9,12,15-Octadecatrienoic acid α-Linolenic acid 18 ω-3 3
(6Z,9Z,12Z,15Z)-6,9,12,15-Octadecatetraenoic acid Stearidonic acid 18 ω-3 4
all-cis-5,8,11,14-Eicosatetraenoic acid Arachidonic acid 20 ω-6 3
all-cis 8,11,14,17-Eicosatetraenoic acid Eicosatetraenoic acid 20 ω-3 4
(5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentenoic

acid
Eicosapentaenoic acid 20 ω-3 5

(Z)-Docos-13-enoic acid Erucic acid 22 ω-9 1
5Z,8Z,11Z)-Eicosa-5,8,11-trienoic acid Mead acid 20 ω-9 3
(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-

hexaenoic
acid

Docosahexaenoic acid 22 ω-3 6

for regular consumption. Such efforts are often deterred by the
off-flavors that accompany the sources of lipids containing PU-
FAs. We highlight here the various health benefits of PUFAs and
focus on their inclusion in foods and the associated challenges
for their delivery.

Dietary Fatty Acids

Food consumption primarily allows organisms to derive en-
ergy, and facilitates metabolic precursor and energetic needs
of a vast network of biosynthetic processes that support life
(Prentice, 2005; Anderson et al., 2006). Irrespective of hierar-
chy in the biological realm, some form of carbon is usually
ingested in order to derive energy, which for mammalian life,
includes three main sources, carbohydrates, amino acids, and
lipids (Prentice, 2005). Notably these molecules also possess
other functions such as formation of structural components such
as cell membranes (Hulbert et al., 2005) or providing build-
ing blocks for other functional proteins and genetic material
(Saris et al., 1998).

Lipids are the richest sources of energy in mammalian diets
(Tataranni and Ravussin, 1997) and are hydrolyzed by digestive
lipases at their ester linkages, releasing the component fatty
acids and the glycerol backbone (Masoro, 1977). The fatty acids
of chain lengths up to 20 carbons are then degraded sequentially
to the 2-carbon precursor acetyl-CoA, which is then utilized via
the Krebs cycle and oxidized to carbon dioxide. This process
yields energy in the form of ATP, with up to 10 ATP generated
per acetyl-CoA entering the Krebs cycle. Thus, the sequential
degradation of a 6-carbon fatty acid molecule such as caproic
acid will yield ∼30 ATP molecules. Additionally, acetyl-CoA
acts as the precursor for in vivo biosynthesis of lipids, amino
acids, and other biomolecules (Harwood, 1988).

Fatty acids present in triacylglycerols are either saturated,
i.e., all carbons in the fatty acids are joined by single (C–C)
bonds, or unsaturated, i.e., contain double bonds (C C) be-
tween carbons in varying proportions (Gunstone, 1996). One or

more double bonds are present in unsaturated fatty acids (mono-
or poly-unsaturated, respectively) and the fatty acid chains are
usually longer than 10 carbons (Table 1). The position of the
first double bond in the alkyl side chain of the fatty acid deter-
mines the nomenclature of the PUFAs. For example, cis, cis, cis
-9,12,15-octadecatrienoic acid (trivial name α-linolenic acid)
has its first double bond at the third carbon from the alkyl ter-
minal, and is classified as a ω-3 fatty acid. Similarly, cis,cis
-9,12-octadecadienoic acid (trivial name linoleic acid) has its
first double bond at the sixth carbon and is a ω-6 fatty acid. Un-
saturated fatty acids that play important roles in human health
usually belong to either of the ω-3 or ω-6 groups, while apart
from oleic acid, the ω-9 fatty acids are considered detrimental
to human health (Table 1).

PUFA Metabolism and Physiological Roles

The fatty acids necessary for an organism are either acquired
from its diet or synthesized from acetyl-CoA produced by car-
bohydrate and amino acid metabolism. The proportions of sat-
urated and unsaturated fatty acids vary by the source of lipids
(Table 2). Marine sources such as fish and fish oils are uniquely
rich in the ω-3 PUFAs EPA and DHA in varying amounts, while
terrestrial sources such as plants, animals, or poultry vary in the
types and quantity of saturated/unsaturated fatty acids. The ma-
jor unsaturated fatty acids in terrestrial sources are oleic and
linoleic acid, which account for 50–70% of total unsaturated
fatty acids; while ALA content of terrestrial sources ranges be-
tween 1 and 100 mg/g of total unsaturated fatty acids (Sheppard
et al., 1978; Christie, 1995), EPA and DHA are not normally
produced. Dietary lipids are metabolized further to derive the
various fatty acids for energy and cellular function.

Both saturated and unsaturated fatty acids released from
dietary lipid hydrolysis, undergo multiple metabolic fates in
mammals (Figure 1) including β-oxidation to acetyl-CoA, es-
terification to form other lipids, or desaturation and conversion
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100 B. GANESAN ET AL.

Figure 1 Metabolic fates of dietary fatty acids.

to other fatty acids (Masoro, 1977; Figure 2). Among PUFAs,
ALA is mainly degraded by β-oxidation and small amounts are
deposited in skin, adipose tissue, and carcass (Sinclair et al.,
2002). Arachidonic acid present in tissue is primarily obtained
from metabolic conversion of linoleic acid rather than directly
from dietary sources and localizes to non-adipose tissue phos-
pholipids (Zhou and Nilsson, 2001). PUFAs also circulate as
free fatty acids in blood plasma; however, ALA is found only
in limited quantities as it is mostly catabolized via β-oxidation
(Arterburn et al., 2006). EPA and DHA, however, increase in
plasma levels when supplemented in the diet. As free fatty acids
are prone to β-oxidation in various tissues they may just act as
substrates for energy.

In contrast to saturated fatty acids, PUFAs are directly incor-
porated into cell membrane phospholipids, and only deposited
in limited amounts into adipose tissue. Membrane PUFAs fluc-
tuate in response to diet while saturated or mono-unsaturated
fatty acids remain constant (Hulbert et al., 2005), suggesting

Table 2 Saturated and unsaturated fatty acid content of dietary lipids1

Total fatty acid (%, w/w)

Lipid source Saturated Unsaturated

Coconut oil 86.3 7.9
Palm kernel oil 81.4 12.9
Cow milk fat 67.9 26.1
Butter 62.3 32.6
Palm oil 47.9 47.7
Cottonseed oil 26.1 69.6
Cod liver oil 17.3 77.1
Peanut oil 17.3 77.8
Sesame oil 15.2 80.5
Soybean oil 15.1 80.7
Olive oil 14.2 81.4
Corn oil 12.7 82.8
Safflower oil 9.5 86.3
Rapeseed oil 4.7 87.7
Safflower oil (high oleic) 6.4 89.2

1Compiled from Sheppard et al. (1978) and Christie (1995).

that membrane PUFA levels depend on dietary PUFA intake
and not biosynthesis. A specific class of enzymes called desat-
urases participate in interconversion of PUFAs by introducing
C C double bonds. Mammals lack the �-12 desaturase en-
zyme required for PUFA synthesis from oleic acid (Figure 2)
and are subsequently incapable of de novo ω-3 and ω-6 PUFA
biosynthesis (Passorn et al., 1999). Hence, they depend on di-
etary sources to obtain the precursors linoleic acid and ALA
(Arterburn et al., 2006) to further synthesize other ω-3 and ω-
6 PUFAs (Figure 2) or at a last resort synthesize ω-9 PUFAs.

Figure 2 Metabolic pathways of PUFA biosynthesis from dietary unsaturated fatty acids. Solid arrows indicate single enzyme reactions, dashed arrows indicate
multi-enzyme processes, and filled arrows point at the biological action of the respective compounds. PG, prostaglandins, LT, leukotrienes.
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OMEGA-3 FATTY ACIDS IN FOODS 101

However, only 4% of ALA consumed by males and 10% in fe-
males are converted to EPA or DHA, and the rest is degraded by
β-oxidation (Tapiero et al., 2002; Burdge, 2006; Childs et al.,
2008).

PUFAs perform several biological roles, mainly being the
sole precursors of eicosanoid hormones (Khanapure et al., 2007)
that possess different roles targeted toward and against tissue
inflammation. Normally, the eicosanoid hormones are gener-
ated from arachidonic acid, an ω-6 fatty acid, and consist of
the prostaglandin, thromboxane, leukotriene, and lipoxin sub-
groups (Funk, 2001), but analogues of eicosanoids are also de-
rived from other ω-6 and ω-3 PUFAs (Khanapure et al., 2007).
The analogues from ω-3 PUFAs are also known as alternative
eicosanoids and named differently, such as resolvins (products
from EPA) and docosatrienes, protectins, and neuroprotectins
(products from DHA) (Serhan, 2005). As a common set of en-
zymes is involved in the biosynthesis of various eicosanoids,
we will continue to refer to ω-3 PUFA analogues as eicosanoid
analogues in this review.

The biosynthesis of eicosanoids proceeds via a series of en-
zymes that release, cyclize, and oxidize PUFAs. Membrane PU-
FAs are cleaved from glycerophospholipids by the enzyme phos-
pholipase A2 (Bingham and Austen, 1999) and converted by
cycloxygenase into the intermediate prostaglandins G2 and H2.
These are eventually converted into the various prostaglandins
responsible for inflammatory response by the further action
of cycloxygenases and by thromboxane synthase into throm-
boxane. Alternatively, the cleaved PUFAs are converted by 5-
lipoxygenase to an epoxide intermediate, leukotriene A4, which
is further converted to three types of leukotrienes depending on
whether it is further hydrolyzed, conjugated with glutathione, or
transformed into other eicosanoids via the action of lipoxyge-
nases. Lipoxins are generated by the action of 15-lipoxygnase
on arachidonic acid.

Apart from energy, hormonal production, and signaling, un-
saturated fatty acids are part of the cell membrane structure and

aid its fluidity. Cell membranes are composed of two layers
of lipids, the inner and outer monolayers, which are asymmet-
rically distributed and form the lipid bilayer (Brenner, 1984).
While the bilayer itself is structurally stable, the membrane
lipids constantly move and rearrange themselves within the
membrane depending on temperature. The rigidity or flexibility
of cell membranes partly depends on the degree of unsaturation
of fatty acids forming membrane phospholipids (Brenner, 1984;
Quinn et al., 1989). Saturated fatty acids in phospholipids allow
them to form a packed, paracrystalline structure with limited
motion; while the double bonds in unsaturated fatty acids in-
troduce kinks in the packing, and produce a more flexible cell
membrane. The flexibility of the cell membrane hence increases
with temperature and with higher levels of PUFAs. The physical
interactions of PUFAs with cholesterol in the cell membrane are
also associated with membrane fluidity (Wassall and Stillwell,
2009).

PUFAs present in membrane phospholipids also participate
in signaling pathways. Longer chain PUFAs, such as arachidonic
acid and linoleic acid, participate in signaling pathways, aid the
release of calcium, and eventually affect signaling pathways tar-
geting the cell nucleus (Jump and Clarke, 1999). Fatty acids also
participate in body temperature regulation via interactions with
glycerolipids (Prentki and Madiraju, 2008). Alterations in mem-
brane lipids also change the cell’s ability for carrier-mediated
transport, alter membrane-bound enzymes, prostaglandin pro-
duction, and cell growth (Spector and Yorek, 1985), and even-
tually affect the organism’s health.

Health Benefits of ω-3 PUFAs

The ω-3 PUFAs provide a wide range of benefits (Table 3)
from general improvements in health to protection against in-
flammation and disease. DHA and EPA have been used in
a number of small clinical trials to understand their efficacy

Table 3 Health benefits of ω-3 PUFAs

Benefit Fatty acid studied Subject or model organism Reference

Lowers insulin resistance ALA Human (Vuksan et al., 2007)
Reduces atherosclerosis DHA, EPA Human (Dyerberg et al., 2004)
Aids neural and brain development ALA, DHA Human, rodents, other primates (Lauritzen et al., 2000; McCann and Ames, 2005)
Anti-tumor DHA Human, rat (Conklin, 2002; Holian and Nelson, 1992)
Prevents apoptosis DHA, EPA Rat (Calviello et al., 1999; German et al., 2006)
Prevents inflammation ALA Mouse, rat (Ren et al., 2007)
Improves bone density DHA Human (Hogstrom et al., 2007)
Alleviates inflammation in cystic fibrosis DHA, EPA Human (De Vizia et al., 2003)
Combats oxidative stress DHA Cat, dog, human (Brown, 2008; Yavin et al., 2002)
Anti-thrombosis EPA Human (Tamura et al., 1992)
Anti-arrhythmia DHA, EPA Human (Lombardi and Terranova, 2007; Nodari et al.,

2009)
Immuno-modulation DHA, EPA Human (Yaqoob and Calder, 2007)
Augments neural, vision, and brain functions DHA, EPA Human (Chen et al., 2008; German et al., 2006; Lauritzen

et al., 2000; Valentine and Valentine, 2004)
Mitigates fatality from cardiovascular disease DHA, EPA Human (GISSI, 1999)

Note: ALA, alpha-linolenic acid, EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.
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102 B. GANESAN ET AL.

(Table 3) and shown to possess immunomodulatory properties
depending on their localization in different cell types (Yaqoob
and Calder, 2007). They also reduce inflammation in many con-
ditions, especially in cystic fibrosis (De Vizia et al., 2003). The
ω-3 PUFAs possess anti-thrombotic properties, that in combi-
nation with their anti-inflammatory effect, is likely to positively
aid cardiovascular disease treatment (Tamura et al., 1992). DHA
and EPA also appear to possess anti-cancer and anti-apoptotic
effects (Holian and Nelson, 1992; Calviello et al., 1999;
Conklin, 2002; German et al., 2006). Additionally, these PU-
FAs suppress gene expression of lipogenic genes in the liver
and trigger adipose fatty acid oxidation, suggesting a potential
role against obesity (Nakamura et al., 2004). The ω-3 PUFAs
are also shown to be beneficial for vision and cognition abilities
as well as brain and neural development (Lauritzen et al., 2000;
Valentine and Valentine, 2004; German et al., 2006; Chen et al.,
2008).

Similar to ω-3 PUFAs, trans-PUFAs found in bovine
milk such as conjugated linoleic acid (cis-trans isomers of
9:11-octadecadienoic acid) and its mono-unsaturated precur-
sor 9-octadecenoic acid or vaccenic acid also possess anti-
carcinogenic effects, inhibit atherosclerosis, increase lean body
mass, and prevent airway inflammation (Kanwar et al., 2008).
However, trans-octadecenoic acids have adverse effects, such
as increasing LDL-cholesterol levels (Khosla and Hayes, 1996),
which contrasts the benefits of ω-3 PUFAs. These health benefits
of ω-3 PUFAs have recently been comprehensively summarized
(NCBI, 2009).

The health benefits of ω-3 PUFAs and their anti-
inflammatory properties are directly attributable to the
eicosanoid hormones that control pro- and anti-inflammatory
responses (Calder and Grimble, 2002; Khanapure et al., 2007).
As described earlier these hormones are produced from arachi-
donic acid and other ω-6 PUFAs and transferred into extra cel-
lular space to reach neighboring target cells. Funk (2001) has
extensively reviewed eicosanoid synthesis and function. Briefly,
inflammatory stimuli such as mechanical trauma, presence of
cytokines, or various growth factors, activate phospholipases to
release arachidonic acid from cell membrane phospholipids for
prostaglandin production (Funk, 2001). Prostaglandin ω-3 ana-
logues synthesized from EPA and DHA are anti-inflammatory
and serve to balance the action of arachidinoyl and other ω-6
prostaglandins. Antithrombotic effects of EPA and DHA are
linked to their ability to form the corresponding analogues of
thromboxane that are either less effective or negate its effects
(Whelan, 1996).

The ω-6 PUFAs also possess attributes important for human
health; however, the resulting eicosanoid hormones synthesized
using ω-6 PUFAs have a pro-inflammatory action. Apart from
the monounsaturated oleic acid, other ω-9 fatty acids such as
the PUFA mead acid (eicosa-5,8,11-trienoic acid) and monoun-
saturated erucic acid, do not possess beneficial attributes for
mammalian health. Mead acid is synthesized only under ab-
normal conditions of PUFA metabolism such as when no ω-3
or ω-3 fatty acids are available to the cells for anabolism into

needed prostaglandins, while mammals do not synthesize erucic
acid (Figure 2).

Notably for human health, the eicosanoids from ω-3 and
ω-6 PUFAs possess opposing modes of action, which re-
quires an appropriate ratio of ω-6:ω-3 PUFAs to be main-
tained for avoiding toxicity and adverse reactions (Calder and
Grimble, 2002). For example, contradictory to ω-3 PUFAs,
ω-6 PUFAs promote the development of adipose tissue (Ail-
haud et al., 2006). Since ω-6 PUFAs are present at higher
levels than ω-3 PUFAs in most dietary lipids (Calder and
Grimble, 2002), dietary ω-3 PUFAs are necessary to attain a
proper balance for long-term health. This ω-6:ω-3 PUFA bal-
ance is altered during chronic diseases such as cardiovascu-
lar disease, cancer, diabetes, and many other disorders sug-
gesting that alterations in this balance correlate with higher
chronic disease risk (Zamaria, 2004). As PUFAs are deemed
essential for normal growth and healthy life (Zamaria, 2004;
Agostoni, 2008) their inclusion in foods consumed at various
stages of life allows a steady supply of PUFAs from infancy to
adulthood.

Re-emerging bacterial pathogens and rapid antibiotic resis-
tance development are some of the bigger challenges in con-
trolling infectious disease dissemination. As most bacteria do
not produce EPA and DHA these PUFAs may possess antibac-
terial potential that we can harness for effective infectious dis-
ease control. However, studies intended to identify this poten-
tial suggest contrasting results. For example gut inflammation
is mitigated in the presence of probiotic bacteria for which
these bacteria need to adhere to intestinal mucosa. But the
ability of probiotics to attach to intestinal cells is limited in
the presence of ω-3 PUFAs at concentrations of 10–40 μg/mL
(Kankaanpaa et al., 2001); whereas some bacteria adhere better
at 5 μg/mL PUFA concentration. The ω-3 PUFAs DHA and EPA
increase the minimum inhibitory concentrations of bactericides
against Escherichia coli by at least 4–6-fold at concentrations
of 50–100 μg/mL (Giamarellos-Bourboulis et al., 1994) and
also reduce host resistance to Listeria monocytogenes (Fritsche
et al., 2005). The ω-3 PUFA linolenic acid does possess antibac-
terial effects against multidrug-resistant Staphylococcus aureus
at 10 μg/mL (Ohta et al., 1994; Lee et al., 2002). In contrast,
Shin et al. (2007) suggest that 30–500-fold higher concentra-
tions of DHA and EPA were required to inhibit 11 food borne
pathogens. They also observed that Gram-positive bacteria are
susceptible at lower concentrations (MIC 350–500 μg/mL) than
Gram-negative bacteria (MIC 1,650–5,000 μg/mL). Potentially
these contradictory results are because of physiological differ-
ences in susceptibility of bacteria used for testing, in combina-
tion with different concentrations and types of fatty acids tested.
Further research is needed to critically understand the mech-
anistic effects of unsaturated fatty acids in bacterial survival
and pathogenicity. However, the additional health attributes of
ω-3 PUFAs suffice to direct our future efforts toward large-
scale clinical studies on ω-3 PUFAs, understanding their mech-
anisms of action, and identifying mechanisms of their dietary
incorporation.
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OMEGA-3 FATTY ACIDS IN FOODS 103

Availability and Fortification of Food and Pharmaceutical
Products with ω-3 PUFAs

To obtain the health benefits of ω-3 PUFAs they need to
be included in daily diets at appropriate amounts suitable to
balance the effects of ω-6 fatty acids. Prior to 2002, only an
acceptable intake for ω-3 PUFA ALA was suggested (1.6 g/d
ALA for men and 1.1 g/d ALA for women) (Trumbo et al.,
2002), while recent developments in ω-3 PUFA research have
led to recommendations for dietary intakes of ω-3 PUFAs EPA
and DHA (0.25–0.5 g/d of EPA and DHA; Harris et al., 2009).
Current population surveys of PUFA consumption suggest that
the average intake of EPA and DHA in North America is only
0.1 g/d (Ervin et al., 2004; Wang et al., 2004). Based on di-
etary recommendations, North American EPA and DHA intake
levels need to be increased 5–15-fold, for which food sources
rich in these PUFAs must be regularly consumed along with
augmenting the production of EPA- and DHA-enriched foods.

The earliest known dietary sources of ω-3 PUFAs are fish and
fish oil (Willie and Gonus, 1988). Marine microalgae consumed
by fish and marine bacteria produce either EPA or DHA as part of
their cell membrane lipids (Table 3) that eventually accumulate
in fish lipids (El Abed et al., 2008). Other PUFAs are found in a
wide range of fungal, plant, and animal sources (Table 3). This
includes common dietary plant oils (linseed, rape seed, soybean,
flaxseed, mustard) that contain linoleic and ALA as the major
PUFAs, but not EPA and DHA. ALA is metabolized into EPA via
desaturation and elongation (Figure 3). Since humans convert
ALA into EPA and DHA with low efficiency (Carlier et al.,
1991), dietary supplementation of EPA and DHA is necessary
to acquire their health benefits. Also, vegans and vegetarians
need supplemented foods in absence of botanical sources of
EPA and DHA.

The availability of novel dietary sources of ω-3 PUFAs is
extensively documented (Whelan and Rust, 2006), but whether

these sources provide sufficient amounts of ω-3 PUFAs has
not been affirmed. Natural sources of PUFAs rather than for-
tified foods have been recommended (Kris-Etherton and Hill,
2008) for optimal health benefits. However these recommen-
dations can be universally achieved only by widespread avail-
ability of foods inherently rich in EPA and DHA and due to
other regional, dietary, and socio-cultural preferences, supple-
mentation of these PUFAs via commonly consumed foods is
necessary.

Challenges in PUFA Fortification

In order to provide adequate PUFAs, the level of their fortifi-
cation into foods needs extensive consideration. At least 0.5 g/d
of ω-3 PUFAs EPA and DHA are recommended for daily con-
sumption (Harris et al., 2009), while preferred intake levels are
2–3-fold higher (Trumbo et al., 2002). Even at 0.5 g/d, con-
sidering that dietary guidelines recommend fat only providing
20–35% of calories consumed (HHS and USDA, 2005), for
an average adult male consuming 2,500 cal/d, 0.5–1% of to-
tal fat must comprise of EPA or DHA or both. When lesser
amounts of lipids are consumed due to caloric restrictions, the
percentage of lipid ω-3 PUFAs required for supplementation
increases, as also with less effective ω-3 PUFAs such as ALA
and stearidonic acid, and varies by the types of other non-ω-
3 fatty acids attached to the glycerol backbone. For example,
consumers that follow a reduced- or low-fat diet may require
that up to 3–10% of dietary lipids consist of ω-3 PUFAs alone.
The sources of ω-3 PUFAs are also critical, as fish oils are
not prevalently used as dietary lipids, and a broader range of
fat-containing foods must be fortified to achieve the 0.5 g/d tar-
get. In the following sections we will address current availabil-
ity and challenges in ω-3 PUFA inclusion for different dietary
sources.

Figure 3 General mechanisms of lipid oxidation in foods (sourced from Kocchar, 1995).
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104 B. GANESAN ET AL.

Table 4 Biological sources of dietary lipids containing PUFAs

Quantity (% w/w of total fat)

Source Linoleic ALA EPA DHA

Plant sources
Castor oil 4 – – –
Coconut oil 1.4 – – –
Corn oil 52 1 – –
Cottonseed oil 50.5 – – –
Linseed oil 14.2 59.8 – –
Olive oil 18.9 0.8 – –
Palm oil 11 0.4 – –
Peanut oil 41.1 0.3 – –
Rapeseed oil (high erucic) 14 10 – –
Rapeseed oil (low erucic) 26 10 – –
Safflower oil (high oleic) 15.8 – – –
Safflower oil (high linoleic) 75.3 – – –
Sesame oil 45 0.6 – –
Soybean oil 53 7.5 – –
Sunflower oil 68.5 0.1 – –

Terrestrial animal sources
Human milk fat 7 1 0.1 0.2
Cow milk fat 2 1 – –
Lard 11.4 1 – –
Beef 3.7 0.18 – –
Sheep 1.6 0.2 – –
Lamb 8.1 1.6 – –
Chicken breast 18.7 1.1 – –
Chicken leg 23.5 1 – –
Turkey 21.3 1.2 – –
Pork 9.7 0.7 – –
Chicken eggs 11.1 0.3 – –

Marine animal sources
Cod liver oil 22.6 – 7 7
Sardine oil 1 – 17 13
Cod 1 – 11 3.5
Sardine 1.3 0.9 16.9 12.9
Herring 2.9 1.1 8.8 10.8
Anchovy 1 – 18 11
Sand Eel < 2 < 2 10.6 8.2
Krill 3.3 1.1 17..4 12.4
Mussels – – 10.2 13.4
Oyster 2 3.3 11.2 9.7
Shrimp 1.6 0.8 14.9 12.8
Scallop 0.1 1.2 26 24.1
King crab 3.2 3.3 21.5 10.2
Clam – – 10 15
Squid 0.7 0.1 14.6 30.4
Mullet 1.9 0.8 16.5 5.8
Hake 2.2 0.5 6.8 31
Sepia 1.2 0.3 20 20.9
Perch 5.5 0.2 5.6 8.1
Tropical halibut – – 2.5 32.3
Shark liver oil 4.1 – 4.3 30
Seal oil 10.3 – 4.7 5.1

Algal sources2

Chlorella officinale 2.5 32
Chlorella minutissima – – 44 –
Phaeodactylum tricornutum – – 26 11
Gonyaulox caterella – 1.3 11.2 34
Crypthecodinium cohnii – – – P
Schizochytrium – – P –
Phaeophyceae – – P P
Phytophthora cinnamomi – – P –

Table 4 Biological sources of dietary lipids containing PUFAs (Continued)

Quantity (% w/w of total fat)

Source Linoleic ALA EPA DHA

Bacterial sources2

Shewanella oneidensis – – P
Moritella marina – – P –
Photobacterium profundum – – – P
Flexibacter polymorphus – – – P
Fungal sources
Pythium spp. – – P –
Morierella – – P –
Pichia pastoris – – P –

1Compiled from Gunstone (1996).
2P, can produce PUFAs but not quantified.

Seafood and Fish Oil

Seafood is a readily available source of PUFAs from organ-
isms thriving in marine environments (Bourre and Paquotte,
2008; Kris-Etherton and Hill, 2008). Fish oil, one of the most
common sources of ω-3 PUFAs, is mainly produced from ma-
rine fish like cod, sardine, herring, anchovy, sand eel, krill, and
similar oil-rich fish and crustacean varieties. Fish oil obtained
from these species is rich in both essential ω-3 PUFAs EPA and
DHA that range from 0.2–15% of the total fatty acids (Table 4).
EPA and DHA are also found in groundwater and estuarial fish
and crustaceans such as mussels, oysters, shrimp, scallop, crabs,
and clams (0.1–2.5%; Ackman, 2000). The concentrations of ω-
3 PUFAs also vary by region and fish varieties. For example,
Mediterranean marine fish such as squid, mullet, hake, and sepia
contain comparably higher amounts of EPA and DHA (5–30%;
Ackman, 2000). Similarly, Australian and tropical fish such as
perch and tropical halibut contain 20–30% fatty acids as EPA
and DHA (Table 4). Consequently the consumption of 5–100 g
of fish, depending on the variety, provides sufficient amounts of
ω-3 PUFAs to deliver health benefits. Fish is also considered
a good protein source (18–25% protein) and most varieties are
low in cholesterol (15–25 mg/100 g; Ackman, 2000) and hence
highly suitable as a ω-3 PUFA source.

However, fish and fish oil pose many challenges as prime
sources of ω-3 PUFAs because of their non-nutritional con-
tents. The increasing mercury content of aquatic environments
also raises concerns about the safety of fish and fish oils (Diez,
2009). Inorganic and organic mercury, particularly alkyl mer-
cury forms, are extremely toxic to humans (Diez, 2009). The
bioaccumulation of mercury in lower aquatic life and subsequent
consumption by higher life forms leads to “biomagnification”
in fish, wherein mercury consumed is retained and passed on to
human consumers. Knowledge of risks associated with methyl
mercury consumption via fish dates back to our knowledge of ω-
3 PUFA benefits (Anonymous, 2007). Currently, aquatic foods
are recognized as the primary source of methyl mercury ex-
posure. Similarly, pesticides and other marine environmental
pollutants are also enriched in fish and fish oil reducing their
safety for consumption (Borga et al., 2004; Nfon et al., 2008).
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OMEGA-3 FATTY ACIDS IN FOODS 105

Mercury accumulation in aquatic life and subsequent toxicity
risk varies in different regions and parts of the world and does not
require termination of fish consumption, but the risk is widely
acknowledged. Alternate and safer sources of EPA and DHA
other than fish need to be identified for safer long-term dietary
fortification.

Fish oil forms <1% of dietary oil consumed worldwide and
hence is not a widespread source of dietary PUFAs (USDA,
2005). Additionally a fishy off flavor is often associated with
fish oils and fish oil-incorporated foods (Ramaswamy et al.,
2001; Perez-Mateos et al., 2004; Venkateshwarlu et al., 2004a)
that make it unacceptable to most consumers.

Infant Formulae and Natal Diet

Prior to conception, maternal lipids are transferred to the pla-
centa either as intact triacylglycerols via low-density lipopro-
tein, or as free PUFAs by a membrane fatty acid binding protein
(Herrera et al., 2006). Post-conception infants can absorb and
synthesize PUFAs from parental essential fatty acids (Herrera,
2002). Infant and neonatal cognitive and visual development is
strongly correlated to inclusion of ω-3 PUFAs in their diet (Innis
et al., 1999; Fewtrell, 2006; Agostoni, 2008). Human milk con-
tains similar amounts of fat to bovine milk and its phospholipids
have similar total amounts of PUFAs, but nearly 7-fold higher
amounts of DHA. At least 12 different ω-6 PUFAs and seven dif-
ferent ω-3 PUFAs have been found in human milk (Jensen et al.,
1992). Human milk is, however, low in EPA, which along with
DHA, is required for hair and dermal growth (Gunstone, 1996).
In order to fortify human milk, dietary increases in PUFA-rich
oils, accompanied with adjustments for caloric intake of lipids,
are recommended for lactating mothers (Agostoni, 2008). This
also aids in taste conditioning of foods containing PUFAs for
natal dietary supplementation (Ackroff et al., 2005).

Various pre- and post-natal supplements and food products
serve the ω-3 PUFA needs of mothers (Table S1; supplementary
data available online). The concentration of total PUFAs vary
between 13% and 26% (w/w) in commercial formulae (Jensen
et al., 1992), which initially only contained ALA as the ω-3
PUFA (Jensen et al., 1992), while infant formulae that contain
EPA and DHA have only become recently available (Douaud,
2006; Starling, 2008). With low efficiency of incorporation into
membrane phospholipids and less benefit from plasma ω-3 PU-
FAs, it is unclear if human milk fortification delivers sufficient
ω-3 PUFAs to infants. The need, however, can be fulfilled via
fortified infant formulae, many brands of which are commer-
cially available (Table S1; supplementary data available online).

Dairy Products

Milk and dairy products are widely consumed by persons of
all ages throughout their life span and are prominent sources
of fatty acids for humans. Bovine milk usually contains 3–4%
fat (MacGibbon and Taylor, 2006) with higher levels in other
ruminants. While more than 400 minor fatty acids are present

in milk, the major cis-PUFA is ALA (∼10 mg/g fat) with EPA
(∼0.9 mg/g fat) and DHA (∼1 mg/g fat) being present at much
lower levels (MacGibbon and Taylor, 2006). Bovine milk also
contains seven other unique cis-PUFAs at lower levels (<1 mg/g
fat) that are polyunsaturated isomers of 20 or 22 carbon-length.
However, none of these alternate PUFAs are associated with
any known health benefits. Fatty acids are also attached to the
0.5–1% phospholipids in bovine milk fat, with glycerophos-
pholipids containing cis-PUFAs in 22–25% (w/w) of their total
fatty acids, while sphingolipids have <1% (w/w) cis-PUFAs
(MacGibbon and Taylor, 2006). Ceramides and gangliosides
are at low levels in milk (2–4 μg/g), contain only ALA, and
are not significant contributors of PUFAs. The concentrations
of cis-PUFAs decrease over lactation. Bovine milk also contains
small amounts (∼15 mg/g fat) of trans-PUFAs that arise from
incomplete ruminal biohydrogenation of unsaturated lipids. The
total ω-3 PUFAs available from milk is only 0.33 mg/100 mL,
so in order to achieve 0.5 g/d ω-3 PUFA intake of at least 150 L
of milk or 15 kg cheese or 5 kg butter is required, suggesting that
unfortified milk and dairy products supply inadequate amounts
of dietary PUFAs.

Commercial dairy products such as liquid milk and yoghurt
are currently fortified with ω-3 PUFAs obtained from flaxseed,
fish oil, or marine microalgae (Table S1; supplementary data
available online). Milk is fortified either by direct addition of
oil or ω-3 PUFA carrier, or indirectly via animal feeding of ω-3
PUFA sources to increase levels in the subsequent milk produced
in the mammary glands. However, ruminant feed incorporation
only mildly increases (<4%) DHA and EPA content of milk fat
due to losses in biohydrogenation by ruminal bacteria (Lock and
Bauman, 2004). Calcium salts of PUFAs may be fed to livestock
to prevent ruminal digestion and modification (Theurer et al.,
2009), but they are either excreted due to poor water solubility
(Graham and Sackman, 1983) or form soaps and may lead to
poor absorption in both livestock and humans. Bovine milk
containing high levels of ALA provides cheese of acceptable
flavor (Hauswirth et al., 2004), and adding ω-3 PUFAs to animal
feed to enhance conjugated linoleic acid, EPA, and DHA in milk,
did not alter milk flavor (Nelson and Martini, 2009).

Martini et al. (2009) made Cheddar cheese from milk forti-
fied with EPA and DHA and noted that the PUFAs were stable
over 3 mo of aging and the fortified cheeses had comparable
flavor to cheese without PUFA addition. Addition of ω-3 PU-
FAs directly into dairy foods during their manufacturing pro-
cess has more likelihood of impacting dietary intakes of ω-3
PUFAs. This necessitates better comprehension of metabolic
and biochemical changes to lipids after addition to dairy foods
in order to prevent off flavor development and changes to
ω-3 PUFAs.

Meat

Dietary lipids are also obtained from meat and meat products,
which form a larger component of adult diets than dairy prod-
ucts. As terrestrial animals do not produce ALA, EPA, or DHA,
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106 B. GANESAN ET AL.

beef, pork, and poultry meats do not naturally contain these fatty
acids. Other PUFAs are found in higher amounts in membrane
lipids than adipose tissue, mainly the ω-6 PUFAs linoleic acid,
the dominant PUFA in both adipose and muscle tissues of beef
(∼40–80 mg/g fat), pork (∼70–149 mg/g fat) or poultry meat
(∼180–220 mg/g fat), followed by traces of arachidonic acid
(Rhee, 2000). Hence, dietary meats are broadly poor sources of
ω-3 PUFAs. Thermal processing of dietary meats (temperatures
> 60◦C) also leads to loss of free PUFAs except for PUFAs
bound to membrane phospholipids that are generally stable to
heating (Rhee, 2000).

The lack of ω-3 PUFAs in dietary meats suggests that for-
tification is necessary to achieve 0.5 g/d ω-3 PUFA intake.
Currently commercial meat products supplemented with ω-3
PUFAs via animal feed are available (Table S1; supplementary
data available online) but only one is a DHA-containing product
(beef from Dalco Foods) and the others contain ALA. As only
4–10% of ALA is converted to DHA and EPA, at least 10 times
the amount of meat (∼1 kg) needs to be consumed daily to pro-
vide sufficient DHA/EPA, suggesting that the current supple-
mentation level of ALA (∼4–5 mg/g fat) is insufficient to meet
dietary needs. Such consumption would also increase dietary
ω-6 PUFAs and total dietary fat consumption, both of which in-
crease the risk for cardiovascular and other lipidemic diseases.
Direct incorporation of DHA and EPA surmounts these risks and
may provide the required ω-3 PUFA content needed for healthy
life.

Other considerations related to PUFA incorporation via an-
imal feed are losses due to digestive metabolism such as rumi-
nant biohydrogenation and suppression by EPA and DHA of
the proliferation of cellulolytic bacteria essential for ruminant
digestion (Maia et al., 2007). The effect of ruminal metabolism
is evident on comparing feed incorporation of ω-3 PUFAs in an-
imals with different digestive systems, where poultry meat and
pork (from single stomach animals) showed a 7–10-fold and
6-fold increase, respectively, while only a 2-fold increase was
observed for beef (Bourre, 2005). Addition of encapsulated ω-3
PUFA powder directly to processed meat avoids issues related
to biohydrogenation in ruminant animals.

PUFAs of varying levels of unsaturation tend to localize into
different tissue types, which alters the amount incorporated and
the tissue to be consumed for health benefits. In poultry, ALA
from feed is predominantly incorporated into adipose tissue
(Rymer and Givens, 2005), as opposed to arachidonic acid,
EPA, and DHA that are absorbed into membrane phospholipids,
and hence are richer in lean meats. Although some researchers
(Rymer and Givens, 2006) found that ALA-inclusion in feed
did not increase EPA and DHA levels in poultry, suggesting
that either the birds cannot convert ALA into longer ω-3 PUFAs
or the converted PUFAs are not deposited into edible tissue.
Additionally, as animal weight (and age) at time of harvest
increases, the PUFA content of meat decreases (Komprda et al.,
2005), and the animal’s health needs to be optimized prior to
harvest to deliver meat with a consistent amount of dietary
PUFAs.

Eggs

Eggs are rich in both protein and lipid content and hence
highly suitable as a macronutrient source. The eggs of a large
number of animals are edible, including amphibians, reptiles,
and terrestrial and aquatic birds, and even fish eggs, like the
expensive delicacy caviar. However, commercial dietary eggs
are mainly derived from chicken and contain 10.6% fat and
12.6% protein. Eggs are considered highly nutritious as egg
protein contains all 20 common amino acids. But the high fat
content and high levels of cholesterol (5% of total lipids) reduces
the widespread acceptability of their healthiness.

Without providing diets formulated to be rich in egg ω-3 PU-
FAs, chicken eggs are poor sources of PUFAs (10–15 mg/g fat)
and the main PUFA is linoleic acid (>95% of PUFAs), while ω-3
PUFAs are below detectable levels (Cantor et al., 2000). Dietary
ω-3 PUFAs can be obtained only from eggs of chickens fed high
ω-3 PUFAs in their diet by including sources such as fish meal,
linseed oil, or salmon oil. Multiple commercials brand of eggs
containing DHA are currently available that deliver 0.125 g/egg,
which increases egg ω-3 PUFAs by 10% (Table S1; supplemen-
tary data available online). Thus, the consumption of four eggs
will provide 0.5 g/day required for health benefits of ω-3 PU-
FAs. However, it is unclear whether ω-3 PUFA incorporation
correspondingly reduces the level of ω-6 PUFAs in eggs. This
also increases the amount of dietary fat consumed from eggs by
4-fold, requiring dietary adjustments for fat consumption. The
crucial challenge for eggs as sources of PUFAs is their high
cholesterol content (Cantor et al., 2000), a risk factor for car-
diovascular disease. It is also unclear if cholesterol negates the
beneficial effect of ω-3 PUFAs.

Bakery Products

Wheat is the staple grain of the Western diet and the third
most widely produced grain after corn and rice. Wheat is usu-
ally ground into flour to make bread with or without dough
fermentation. Different types of fat are added during dough-
making depending on the type of bread, and hence, wheat can
be easily fortified by addition of ω-3 PUFA-rich fats during
bread making. Bakery products such as cakes, cookies, and pas-
tries are manufactured from multiple ingredients wherein ω-3
PUFA-enriched ingredients such as eggs and dairy products can
be specifically used in combination to provide enhanced health
benefits. However, only bread is commercially produced with
added ω-3 PUFAs (Table S1; supplementary data available on-
line).

Bakery products do not usually include products from fish or
fish oil. Inclusion of oils rich in ω-3 PUFAs, while increasing
plasma ω-3 PUFA levels upon consumption (Yep et al., 2002),
also causes deterioration in the quality and acceptance of bak-
ery products upon storage (Serna-Saldivar et al., 2006), which is
likely due to heat-generated susceptibility to oxidative lipid de-
terioration in cereal products (Fellers and Bean, 1977; Frankel
et al., 2002). Apart from heat, physical forces also appear to

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
6:

06
 0

9 
Ja

nu
ar

y 
20

14
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play a role in lipid instability. For example, (Laignelet and Du-
mas, 1984) showed that ∼45% of flour lipids were lost due to
lipid oxidation even within 10 min of dough mixing. Additional
studies are needed to improve the storage stability and consumer
acceptance of bakery products fortified with ω-3 PUFAs.

Vegetarian and Vegan Diets

Plant oils used for cooking are the most common source of ω-
3 PUFAs for vegan and vegetarian consumers. Plant cooking oils
are rich in linoleic acid and ALA but are still deficient in EPA
and DHA (Table 4). With rising levels of obesity worldwide,
especially in developing countries, the increased consumption
of plant oils for PUFA combined with caloric monitoring and
restriction of dietary lipid intake for proper health has been
recommended (Ackroff et al., 2005). Plant oils can be supple-
mented with EPA and DHA from vegetable sources such as
marine algae or fungi and a limited number of such products are
commercially available. Since the major portion of dietary fat
for vegetarians is obtained from cooking oil, the high amount
of oil used provides sufficient ω-3 PUFAs upon fortification.

A major challenge with ω-3 PUFA addition to plant oils is
loss of heat stability (Goburdhun and Jhurree, 1995; Choe and
Min, 2007; Ayadi et al., 2009; Hack et al., 2009). Oils containing
higher amounts of PUFAs are less stable at high temperatures
and form free radicals, free fatty acids, and other hydrolysis and
oxidation products (Eunok and David, 2006) that are detrimental
to cardiovascular health (Patrignani, 2001; Waddington et al.,
2003). Increase in ω-3 PUFA content may cause the oil to be
more heat labile and negate the cardiovascular benefits of ω-3
PUFA inclusion. Novel formulations of cooking oils that include
ω-3 PUFAs and desirable amounts of antioxidants would need
to be developed to provide health benefits of ω-3 PUFAs.

Other Food Products

Breakfast products such as cereals and bars are convenient
modes for PUFA fortification (Table S1; supplementary data
available online). Juices consumed during breakfast can also be
fortified, as also spreadable products such as jams, jellies, peanut
butter, and dairy spreads. Unique food products such as fortified
cheese sauce and chocolate are also commercially available.
In all these products, challenges exist for incorporation of ω-3
PUFAs (that have already been highlighted in previous sections)
for stable maintenance and delivery in sufficient quantities to
meet RDA recommendations. As these products do not form
part of staple diets worldwide, and are not consumed in high
quantities, fortification may provide the intended health benefits
only to specific populations and in limited amounts.

Pharmaceutical Supplements

A large number of nutritional supplements that include ω-
3 PUFAs as one of the active ingredients are commercially
available (Table 4). Over 15 brands sell products that directly

provide ω-3 PUFAs, mainly in the forms of fish liver oil or
cod liver oil that are encapsulated in soft gels. A variety of
benefit claims such as joint relief, reduction in triglycerides,
heart health, and immunity are made by manufacturers as part
of the marketing strategy for these supplements. However, the
FDA has recognized the role of ω-3 PUFAs only in reducing risk
of coronary heart disease and has permitted ω-3 PUFA use with
a qualified health claim (FDA, 2004). Any additional benefits
touted by manufacturers are not FDA-recognized and subject to
verification.

Commercial ω-3 PUFA Supply

The increasing demand for ω-3 PUFA supplements neces-
sitates their production at a larger scale than their availabil-
ity via fish oils. Over 33 suppliers of ω-3 PUFAs are found
worldwide (ICIS, 2009) of which 26 are based in the US. Cur-
rently, PUFA-rich oil is extracted directly from fermentations
by microalgae isolated from marine environments (Certik and
Shimizu, 1999; Spolaore et al., 2006) in place of oil extraction
from fish. Biotechnological production of ω-3 PUFAs from a
non-animal source is suitable for vegetarians and avoids envi-
ronmental toxicity and poor infantile and neonate absorption
issues associated with fish oils (Nutting et al., 2002). While ω-3
PUFAs are added to foods and supplements, consistent delivery
requires their presence in such products over time, bringing into
question the stability of PUFAs in food products.

Stability of PUFAs in Foods

Dietary lipids are susceptible to oxidation that generates un-
saturated carbonyls and other reaction products during food
manufacturing processes (Eunok and David, 2006). Heat or
ultraviolet light exposure, or the presence of metal catalysts,
initiates the conversion of fatty acids or acyl glycerols to the
lipid alkyl radical form by removing a hydrogen atom. The lipid
alkyl radicals thus formed from lipids react with atmospheric
triplet oxygen to generate allylic hydroperoxides. These lipid
peroxyls then abstract hydrogens from other lipid molecules,
thus forming new lipid peroxyl radicals that are highly reac-
tive. Transition metals present in oils, such as iron and copper,
reduce the activation energy for initiation and catalytically cy-
cle the hydroperoxides to increase autoxidation. Additionally,
triplet oxygen is also converted to singlet oxygen in the pres-
ence of light and a type II photosensitizer. Singlet oxygen thus
generated can also then react directly with the lipids to form
peroxyl radicals. Notably, the hydroperoxides formed from the
initial reactions retain the double bonds found in the fatty acid
moieties but the nature of the double bond, such as its position or
configuration, are likely to be altered. The autoxidation process
is eventually terminated when the free radicals and/or hydroper-
oxides react to form stable end products. The presence of free
fatty acids greatly enhances the initiation of lipid oxidation.
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Dietary lipids from different sources contain varying propor-
tions of saturated and unsaturated fatty acids (Table 2). Lipids
that contain more saturated fatty acids are relatively more stable
to oxidative reactions, whereas lipids rich in unsaturated fatty
acids are less stable and are readily oxidized. Thus, PUFAs are
more reactive to chemical modifications like hydrogenation and
metal-catalyzed autoxidation than saturated fatty acids as they
possess multiple C C bonds that are susceptible to electrophilic
attack (Gunstone, 1996). With more unsaturated fatty acids at-
tached to lipids, the susceptibility to oxidation by free radicals
increases and further reactive processes such as hydroxylation
and oxidation are facilitated (Eunok and David, 2006), and the
products of such reactions are known to be harmful to the car-
diovascular system (Patrignani, 2001; Waddington et al., 2003)
and are carcinogenic.

Oxidative loss of PUFAs in foods and supplements is limited
by adding antioxidants to foods. Antioxidants inhibit oxidative
deterioration by delaying the induction of autoxidation or reduc-
ing the rate of oxidation by either scavenging free radicals and
lipid peroxides or controlling transition metals (Choe and Min,
2007). These processes prolong shelf life and promote palata-
bility of the products. Emulsification of fish oil also enhances
oxidative stability for specific foods by limiting access of lipids
to oxidants (Let et al., 2007). For example, emulsification by
lactoglobulins electrostatically inhibits iron-hydroperoxide in-
teractions and stabilizes lipid hydroperoxides, eventually reduc-
ing hydroperoxide concentration, and enhancing lipid stability
(Kellerby et al., 2006).

Fish oil and algal oil lipids are rich in ω-3 PUFAs and are
consequently highly susceptible to autoxidation. Therefore, pro-
cesses for controlling oxidative loss of ω-3 PUFAs have al-
ready been developed for fish oil. For example, the addition
of alpha-tocopherol delays the onset of oxidation and main-
tains fish oil in a stabilized form in microencapsulated powder
(Hogan et al., 2003). Similarly, the removal of tocopherol and
other antioxidants from fish oil led to loss of DHA stability and
needed addition of EDTA for restoring oil stability (Frankel
et al., 2002). Microencapsulated multilayer emulsions made
from lecithin and chitosan that contain corn syrup solids and
EDTA, also effectively prevent fish oil oxidation by limiting hy-
droperoxide formation (Shaw et al., 2007) as do lactoglobulin
emulsions (Katsuda et al., 2008). However, lengthy storage of
supplements containing microencapsulated fish oil can lead to
oxidation of fatty acids and a fishy off flavor due to air expo-
sure (Kolanowski and Weißbrodt, 2008). Hence, the prevalence
of fishy off flavor from ω-3 PUFA sources, even in stabilized
fish oil products, needs to be addressed in order to extend shelf
life and provide products of acceptable flavor. Multiple methods
are essential to limit autoxidation of PUFA-rich foods (Wang
and Wang, 2008). The oxidative breakdown of PUFAs results
in unsaturated aldehydes and carbonyls, which are potentially
detrimental to human health (Figure 2; Guiotto et al., 2005; Al-
dini et al., 2007; Hill et al., 2008). Additionally, off-flavors are
also generated and consequently the product becomes unaccept-
able for consumption (Brewer, 2009).

Sources of Fishy Flavor in Foods

The characteristic fishy flavor of fresh fish is a desirable at-
tribute for its palatability (Ganeko et al., 2008) but fishy flavor
is not a desirable attribute in other foods (Im and Kurata, 2003)
and severely limits our ability to include PUFA-fortified foods
as a regular part of our diets. The unwanted fishy flavor in foods
refers to an oxidative flavor that appears to be the results of prod-
ucts formed from lipid autoxidation and is variably described as
rancid, train oil-like, or metallic (Venkateshwarlu et al., 2004a;
Venkateshwarlu et al., 2004b; Gudipati et al., 2010).

Lipid autoxidation products have been strongly attributed
to cause fishy off flavor (Venkateshwarlu et al., 2004a;
Venkateshwarlu et al., 2004b). High purity preparations of fish
and algal oils are low in autoxidation products and also possess
less intense fishy flavor (Miller et al., 2007), suggesting that lipid
oxidation may be the primary mechanism by which fishy flavor
precursors are generated. The potential involvement of lipid oxi-
dation in fishy flavor defects has been widely addressed by devel-
oping solutions to address lipid oxidative stability. The physical
properties of lipid solutions have been extensively studied to
understand their stability (Chaiyasit et al., 2007; Katsuda et al.,
2008), including the application of surfactants (Chaiyasit et al.,
2008), as well as proteins and peptides (Kellerby et al., 2006),
milk whey (Tong et al., 2000), organic acids (Ke et al., 2008),
SDS-fish gelatin membranes (Surh et al., 2005), alginate (Gudi-
pati et al., 2010), and other multi-layered membranes (Gudipati
et al., 2010). Other applications to improve PUFA stability in
foods include the use of spice extracts and commercial antiox-
idants (Galobart et al., 2001), micro-encapsulation of spray-
dried fish oils (Hogan et al., 2003), fish oil pre-emulsification
(Let et al., 2007), and oil interesterification (Aguedo et al.,
2008).

In order to decipher the role of lipid oxidation end products
in fishy flavor, many researchers have added DHA and EPA
to foods and shown that fishy flavor increases, or have cre-
ated large libraries of compounds considered as lipid oxidation
products (Im and Kurata, 2003; Allred et al., 2006; Let et al.,
2007; Brewer, 2009). For example, surimi seafood gels (used as
crab analogues) fortified with fish oils, developed fishy flavor
within 30 d (Perez-Mateos et al., 2004). Autoxidized soybean,
linseed, and fish oils that possessed a whale-like or fishy flavor
was shown to contain an unsaturated aldehyde, 2-trans,4-cis,7-
cis-decatrienal to which this flavor was attributed (Meijboom
and Stronk, 1972). The isolated or selected inclusion of these
compounds in foods has also been shown to increase fishy fla-
vor such as by addition to milk (Venkateshwarlu et al., 2004a)
or salmon (Refsgaard et al., 2000). Cumulatively, from all the
above studies, over 100 different unsaturated carbonyls have
been found to be present and supposedly associated with fishy
flavor development in ω-3 PUFA-fortified foods.

Another approach to understand the components of fishy
flavor in PUFA-fortified foods added antioxidants to ame-
liorate the lipid autoxidation product formation and further
tested their sensory attributes (Jacobsen, C., Adler-Nissen et al.,
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1999; Jacobsen, C., Hartvigsen et al., 1999; Jacobsen et al.,
2000; Jacobsen et al., 2001). Using this approach, Jacobsen’s
group showed that tocopherol reduced rancid flavor forma-
tion, but tocopherol and propyl gallate unexpectedly increased
fishy flavor in mayonnaise, suggesting that these antioxidants
may be incapable of improving peroxide decomposition from
metal ion catalysis. They further performed GC-MS analysis to
identify unsaturated carbonyls and alcohols (trans-2-heptenal,
4-octen-3-one, 1-octen-3-ol, trans, cis-2,4-heptadienal, trans,
trans-2,4-heptadienal, trans-2-octenal, nonanal and trans, cis-
2,6-nonadienal in tocopherol-added fish oil-fortified mayon-
naise, and 3-furaldehyde, 2,4-heptadienal, 2,4-decadienal and
ethyl benzene in propyl gallate-added fish oil-fortified may-
onnaise) were correlated to fishy odor and flavor perception
increases. The presence of 2,4-heptadienal in both tocopherol-
and propyl gallate-added fish oil-containing mayonnaise adds
credence to the hypothesis that unsaturated carbonyls arising
from lipid autoxidation are the cause of fishy flavor. Further
studies by this group reveal that different matrices respond vari-
ably to altering the antioxidants used for improving fishy flavor,
such as EDTA being effective in salad dressings as opposed to
ascorbyl palmitate being effective in milk (Jacobsen, C. et al.,
2008). For further discussions about the potential mechanisms
of fish oil containing foods, the reader is referred to an extensive
literature base from Jacobsen’s group.

Notably, the putatively identified compounds from PUFA-
fortified foods show fishy flavor or odor only when tested in
foods and not individually in aqueous solutions (Venkateshwarlu
et al., 2004a). Additionally, the requirement of different com-
pounds in different matrices further confounds fishy flavor ame-
lioration; for example, hexanal found among volatiles of fishy
flavor mayonnaise was not detected in liquid milk. Consider-
ing that the identification of a compound that possesses fishy
flavor by itself has proven elusive, a role for the compounds
identified thus far for fishy flavor is unclear. Other possible al-
ternative mechanisms include their participation in a cohort to
cause fishy flavor (the combination of which is yet to be deter-
mined) or that they enhance fishy flavor sensations contributed
by compounds originating from additional mechanisms such as
microbial metabolism.

While it is commonly believed that EPA and DHA contribute
to fishy flavor, the original flavor of these fatty acids or their
glycerides has not been examined. Since esterified fatty acids
cannot be selectively removed from lipids, alternate processes
that aid removal of fishy flavor are essential for an acceptable
carrier of EPA and DHA. Interestingly, very few compounds are
conclusively linked to fishy flavor even though the flavor defect
occurs in a wide variety of foods. Industrial processes such
as deodorization of fish oils reduce their fishy flavor (Willie
and Gonus, 1988); however, they also reduce ω-3 content of
fish oils. Besides, the flavor profile of glycerides, or esters, of
long chain PUFAs is not known; hence, a direct link between
PUFAs and fishy flavor is not evident. Fatty acids of comparable
chain lengths to DHA and EPA (18–22 carbons) are typically
associated with a waxy or oily flavor and possess low volatility

Table 5 Examples of commercial brands selling products that contain ω-3
PUFAs as a supplement

Advocare Sundown Nutri-Supreme
Mega Smarts Eniva Vitamin Shoppe
Pure Encapsulations Nature’s Sunshine Integrative

Therapeutics
Aristo Swanson OmegaBrite
Minami GNC Vitamin World
Puritan’s Pride New Chapter Jarrow
Berkley and Jensen (BJ’s) Tropicana �-Gel
Mommy’s Bliss Great American Products Wegmans
Shaklee Nordic Naturals Kirkland (Costco)
Carlson Twinlab Origin (Target)
Natural Factors Health from the Sea Weil
Silk (White-Wave) Now Life Extension

Foundation
Coromega USANA PharmAssure
Nature Made Healthy Hide Yoplait
Spring Valley (Wal-Mart) Nutramax Lipiderm
CVS VitalOils1000 Pharmanex
Nature’s Bounty Iceland Health

(Brennand et al., 1989) that likely precludes their role in fishy
flavor and suggest roles for other compound classes.

Apart from the fatty acids themselves, the end products of
PUFA metabolism, such as short chain fatty acids, alcohols, and
carbonyls and other compounds present in foods arising from
reactions with these products, may be responsible for fishy off
flavor. A broad variety of compounds that includes unsaturated
aldehydes, ketones, volatile sulfur compounds, and medium
chain fatty acids have been implicated in fishy flavor of food
products (Table 5). Of these groups, unsaturated medium chain
aldehydes, like the hexenal isomers derived from the catabolism
of long chain PUFAs, are directly involved in fishy flavor (Ra-
maswamy et al., 2001). Similarly 2-trans,4-cis,7-cis-decatrienal
is a product of ALA autoxidation (Meijboom and Stronk, 1972).
These compounds are typically produced by lipid autoxidation,
and processes for fishy flavor reduction have been developed to
further oxidize these and other aldehydes in foods to flavorless
compounds (Garter et al., 2008). But such processes may also
alter other compounds responsible for beneficial flavor and ox-
idize the PUFAs, thus reducing the nutritional value of PUFA
addition and changing the acceptability of the product.

Ketones and volatile sulfur compounds also cause fishy flavor
defects in foods (Table 6). Dimethyl trisulfide alone causes fishy
off flavor in meat (Brewer, 2009), while 1,5-octadien-ω-3-one
and methional in a 1:100 ratio are responsible for fishy odor in
dried spinach (Masanetz et al., 1998). Ketones are derived from
both autoxidation and microbial degradation of fatty acids and
aldehydes, while volatile sulfur compounds result only from mi-
crobial amino acid metabolism (Gao et al., 1998). Notably, the
addition of amino acids and whey proteins is reported to reduce
fishy off flavors in breakfast cereals by binding the responsi-
ble aldehydes (Garter et al., 2008); but not all amino acids are
correlated to reduction in fishy aroma. Subsequent loss or resur-
gence of fishy flavor over storage was also not tested; hence,
the stability of flavor amelioration is unclear. The addition of
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Table 6 Compounds linked with fishy flavors in foods

Compound class Compound Food product Off flavor Potential mechanism Reference

Aldehydes n-hexanal butter fishy lipid autoxidation (Ramaswamy et al., 2001)
n-hex-2-enal butter fishy lipid autoxidation (Ramaswamy et al., 2001)
n-heptanal butter fishy lipid autoxidation (Ramaswamy et al., 2001)
2,4-Heptadienal Porcine liver fishy lipid autoxidation (Im and Kurata, 2003)
2-trans,4-cis,7-cis-decatrienal Porcine liver fishy lipid autoxidation (Meijboom and Stronk, 1972)

Ketones 1,5-octadien-ω-3-one dried spinach fishy microbial metabolism (Masanetz et al., 1998)
Volatile sulfur compounds Methional dried spinach fishy microbial metabolism (Masanetz et al., 1998)

Dimethyl trisulfide Meat fishy Autoxidation during irradiation (Brewer, 2009)

alpha-tocopheryl acetate to chicken diet also prevents PUFA
oxidation in enriched eggs (Galobart et al., 2001). Given the
variety of compounds likely to contribute to fishy flavor, our
ability to attribute aldehydes as causative to fishy flavor and
amino acids as direct modulators of aldehydes’ oxidation states
is limited at this point. Also, amino acid metabolism may even-
tually add to fishy off flavor via amine generation (Lunden et al.,
2002; Honkatukia et al., 2005). Considering that oxidation of
the fishy flavor impact-compounds reduces the flavor percep-
tion, simultaneous oxidation of these compounds may aid flavor
improvement.

The role of antioxidants in particular in ameliorating fishy
flavor from fish oil-fortified foods has been chiefly used to un-
derstand the mechanism of unsaturated aldehyde generation by
linking to lipid autoxidation (Jacobsen et al., 2008). However,
the role of antioxidants in reducing other compound classes has
not been discussed in these studies. Antioxidants are capable
of oxidizing a larger variety of compounds than unsaturated
carbonyls alone; for example, the pro-oxidant ascorbate can
oxidize methanethiol to dimethyl sulfide and dimethyl disul-
fide (Chin and Lindsay, 1994). Similarly, reductions in levels
of volatile sulfurs and carbonyls were also observed when an-
tioxidants such as tocopherol, gallate, and sesamol were added
to pork patties (Nam and Ahn, 2003). Thus, while the role
of antioxidants in improving fishy flavor defects in foods is
clear, the role of a particular group of compounds is yet to
be fully established. Considering that carbonyls, medium chain
fatty acids, and volatile sulfurs are all lipid-soluble (Christensen
et al., 1981; Christensen and Reineccius, 1992) and become less
volatile when they are mixed into lipids than in water (Brennand
et al., 1989) and are all subject to antioxidant action (Chin and
Lindsay, 1994; Nam and Ahn, 2003), the causant role of these
compounds classes deserves further investigation.

In summary, a wide range of compounds appears to be re-
sponsible for fishy flavor in foods. However, the role of such
compounds in foods fortified with ω-3 PUFAs is unclear except
for unsaturated aldehydes proposed to arise from PUFA degra-
dation and autoxidation (Ramaswamy et al., 2001). As some
of the putative impact compounds are products of amino acid
degradation, it appears unlikely that any group of compounds
and their metabolism or autoxidation, singlehandedly contribute
to fishy off flavor. Further characterization of fishy flavor asso-
ciated with ω-3 PUFAs is a necessary step toward improving
the flavor profile of foods fortified with ω-3 PUFAs.

Future Needs

The benefits of ω-3 PUFAs to human health are widely ac-
knowledged. Dietary consumption of ω-3 PUFAs via incorpo-
ration into foods is ultimately the most effective mechanism of
providing them to the average consumer. However, the fishy
odor and flavor that pervades products naturally rich in ω-3 PU-
FAs, like fish oil, deters direct consumption. The ω-3 PUFAs
themselves do not apparently contribute to this fishy flavor. In
order to make ω-3 PUFA-containing foods palatable, the sources
of fishy flavor need to be identified and mechanisms for their
elimination need to be discovered. This would then allow fortifi-
cation of more foods with ω-3 PUFAs, that would then increase
the likelihood that Western diets would have the overall and
consistent increase in ω-3 PUFAs, needed to bring about long
term health improvements.
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