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Recent advances in rapid and nondestructive determination of fat content and fatty
acids composition of muscle foods

Feifei Tao and Michael Ngadi

Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada

ABSTRACT
Conventional methods for determining fat content and fatty acids (FAs) composition are generally based
on the solvent extraction and gas chromatography techniques, respectively, which are time consuming,
laborious, destructive to samples and require use of hazard solvents. These disadvantages make them
impossible for large-scale detection or being applied to the production line of meat factories. In this
context, the great necessity of developing rapid and nondestructive techniques for fat and FAs analyses
has been highlighted. Measurement techniques based on near-infrared spectroscopy, Raman
spectroscopy, nuclear magnetic resonance and hyperspectral imaging have provided interesting and
promising results for fat and FAs prediction in varieties of foods. Thus, the goal of this article is to give an
overview of the current research progress in application of the four important techniques for fat and FAs
analyses of muscle foods, which consist of pork, beef, lamb, chicken meat, fish and fish oil. The
measurement techniques are described in terms of their working principles, features, and application
advantages. Research advances for these techniques for specific food are summarized in detail and the
factors influencing their modeling results are discussed. Perspectives on the current situation, future
trends and challenges associated with the measurement techniques are also discussed.
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Introduction

Fat and fatty acids (FAs) are vital nutritional components of
various kinds of foods, as they are important for energetic, met-
abolic, and structural activities of human beings. In particular,
the essential fatty acids (EFAs), or their metabolic derivatives
are required for normal growth and physiological integrity and
cannot be synthesized in adequate amounts by the human
body. The linoleic acid (LA, C18:2 n-6) and a-linolenic acid
(ALA, C18:3 n-3) are now known to be the EFAs for humans.
Derivatives such as arachidonic acid (ARA, C20:4 n-6), eicosa-
pentaenoic acid (EPA) (C20:5 n-3), and docosahexaenoic acid
(DHA) (C22:6 n-3) are called “conditionally essential” in cir-
cumstances such as those which exist in premature infants
where they cannot be synthesized by the body in adequate
amounts. Moreover, the ALA has also been demonstrated to
have health benefits by lowering blood lipid concentrations and
reducing the risk of platelet aggregation and thrombosis
(Vanschoonbeek et al., 2003). Therefore, adequate amounts of
dietary fat/FAs, especially some particular types are essential
for our health. In addition, from the viewpoint of food factories,
proper amounts of fat content and FAs composition are impor-
tant for high-quality food. For instance, the fat in meat makes a
significant contribution not only to the texture and juiciness
but also to the taste and smell of the final product (Fernandez
et al., 1999a; Wood et al., 1999). However, some types of fat
and FAs are also known to have negative effect on human

health (Wood et al., 2008). Reports have shown that an excess
in consumption of saturated FAs (SFAs) as well as of some
trans- and n-6 FAs has been associated with negative effects on
cholesterolemia, obesity, metabolic syndrome, and coronary
heart diseases (Hayes and Khosla, 1992; Hu et al., 1999; Kratz
et al., 2013; Shingfield et al., 2008; Stark et al., 2008). In this
context, the demand by consumers for information on fat con-
tent and FAs composition in foods is growing, and thus it has
increasingly become important for food manufacturers to char-
acterize the chemical composition and to provide labeling of
chemical composition information in their products.

At present, the conventional methods for determination of fat
content and FAs composition in foods are generally based on
the solvent extraction and gas chromatography (GC) techniques,
respectively. However, these methods are time consuming, labo-
rious, and destructive to the tested samples. They use hazard sol-
vents, also need experienced and properly trained personnel to
perform, making them impossible for large-scale detection or
integration in an online production in food factories. Therefore,
development of innovative and nondestructive detection techni-
ques to facilitate simple, fast, and accurate determination of fat
content and FAs composition in muscle foods are attracting
increasing attention in the meat industries. Among current
emerging technologies, the optical-based methods have been
reported to show the greatest potential for online applications
(Shackelford et al., 1999; Vote et al., 2003). The use of such
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methods has been recently studied extensively and implemented
as alternatives to conventional analytical methods for determina-
tion of fat content and FAs composition in muscle foods. There-
fore, the main goal of this article is to give an overview of the
current research progress in application of near-infrared spec-
troscopy (NIRS), Raman spectroscopy (RS), nuclear magnetic
resonance (NMR) and hyperspectral imaging (HSI) techniques
to fat and FAs analyses in muscle foods, which consist of pork,
beef, lamb, chicken meat, fish, and fish oil. These techniques are
described in terms of their working principles, features, and
application advantages in fat and FAs analyses. The research
advances of each technique in fat and FAs analyses of each spe-
cific variety of muscle food are summarized in detail and the fac-
tors influencing their modeling results are discussed in this
article. In addition, perspectives on their current situation, future
trends and challenges are also discussed.

Detection techniques

Near-infrared spectroscopy

Near-infrared region (NIR) in the electromagnetic spectrum is
defined to be from 780 to 2526 nm (12821–3959 cm¡1) by the
American Society of Testing and Materials. This region is
located between the red band of the visible light and the mid-
infrared regions (Burns and Ciurczak, 2001). NIRS is a rapid
and nondestructive technique based on the principle that dif-
ferent chemical bonds absorb or emit different wavelengths of
light when the sample is irradiated by continuous changing fre-
quency of NIR light. The absorption intensity is related to the
content of the chemical substances in the tested sample (Cen
and He, 2007; Prevolnik et al., 2004). The record of NIR region
of the electromagnetic spectrum involves the response of the
molecular bonds C-H, O-H, N-H, and C-O. These bonds are
subject to vibrational energy changes when irradiated by NIR
light, and two vibration patterns exist in these bonds including
stretch vibration and bent vibration. However, NIR spectra are
complex due to highly overlapping and weak absorption bands
associated with overtones and combinations of vibrational
bonds, which therefore needs the chemometric assistance for
spectral interpretation and analysis.

For NIRS, there are three main modes of data collection
(Wu and Sun, 2013), namely, reflectance, transmittance, and
interactance. The determination of a suitable measurement
mode relies on the type of sample and the constituents to be
tested. In reflectance mode, the radiation reflected from the
sample surface and the detector is located at the same side of
the light source to capture the reflected light from the sample,
which is usually used for solid or granular samples. Tests in
transmittance mode measure the amount of light transmitted
through the sample, which is usually small but may carry more
valuable information in it (Schaare and Fraser, 2000). In trans-
mittance mode, the detector is located at the opposite side of
the illumination, and such a mode is normally used for the
analysis of liquid samples and certain solid samples, such as
milk, meat, and so on. Interactance mode is a combination of
reflectance and transmittance, in which the light source and the
detector are positioned parallel to each other on the same side
of the tested product (Nicolai et al., 2007). Generally, in the

area of food analysis, the measurement modes of reflectance
and transmittance are employed for NIRS.

Nowadays, with the development of chemometrics and
computer technique, NIRS has been extensively studied as an
effective tool for the evaluation of food quality and safety. It
can offer a number of important advantages over conventional
methods such as rapid and nondestructive measurements, sim-
ple or no sample preparation, suitability for online use and
simultaneous determination of multiple attributes. The capabil-
ity of using NIRS technique to predict fat content and FAs
composition in foods is due to the absorption of light by the
C-H bonds of FAs in the wavelengths of 1100–1400, 1700, and
2200–2400 nm (Williams and Norris, 1987). Moreover, the
structure of FAs in foods can also be appreciated in special
spectral characteristics and they are, therefore, very accessible
for detection by NIRS. The absorptions at 1680, 2150, and
2190 nm are reported to be attributed to the -CH bond joined
to a cis-unsaturation (Murray and Williams, 1987; Sato et al.,
1991). The absorption bands between 2100 and 2200 nm are
considered to be related to the length of the chain and the dou-
ble cis- bond, respectively (Sato et al., 1991). As the visible (Vis)
spectral range is commonly covered by the NIRS instrument,
the following applications of NIRS to fat content and FAs com-
position analyses are reviewed including the Vis range.

Raman spectroscopy

The phenomenon of inelastic light scattering is known as
Raman radiation and was first documented by Raman and
Krishnan (1928). When a substance is irradiated with mono-
chromatic light, most of the scattered energy comprises radia-
tion of the incident frequency (Rayleigh scattering). In addition,
a very small quantity (0.0001%) of photons with shifted fre-
quency is observed, and is called Raman scattering. There are
two types of Raman scattering, namely, Stokes scattering and
anti-Stokes scattering. The fraction of photons scattered from
molecular centers with less energy than they had before the
interaction is called Stokes scattering. The anti-Stokes photons
have greater energy than those of the exciting radiation (Fig. 1).

Figure 1. Schematic representation of energy transitions in Raman spectroscopy.
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The above-mentioned discovery of Raman scattering gradu-
ally paved the way for present-day applications of RS for deter-
mining the compositions of samples tested. Raman and
infrared (IR) spectroscopy are complementary techniques as
both spectra are concerned with measuring associated molecu-
lar vibration and rotational energy changes. However, the
requirement for vibrational activity in Raman spectra is not a
change in dipole moment, as it is in IR spectra, but a change in
the polarizability of the molecule. Hence, nonpolar groups such
as CHC, C��C, and S��S have intense Raman bands, other
than the polar groups such as CHO, N��H, and O��H which
have strong IR stretching vibrations. Moreover, Raman scatter-
ing is a relatively weak phenomenon that occurs only once in
every 106–108 photons, which are scattered (Smith and Dent,
2005).

RS typically makes use of lasers in the Vis, NIR, or near
ultraviolet range for excitation. The interference from strong
and broad fluorescence signals of samples combined with low
sensitivity have traditionally been some of the major challenges
to RS technique However, significant instrumental improve-
ments on stability, sensitivity, and sampling techniques have
been achieved, making it possible for an increased number of
studies related to RS for food analysis in recent years (Beattie
et al., 2004; Wold et al., 2004). A number of technological
advances such as holographic notch filters for rejection of elas-
tically scattered light and the availability of long wavelength
(750–1064 nm) excitation lasers (which reduce background
fluorescence problems) are making the technique more accessi-
ble than ever before. For compositional analysis of various
foods, RS has an advantage over other optical methods in that
the influence of water on the Raman spectra is almost
negligible.

The potential of RS for the analysis of fats and FAs in foods
has been recognized for some decades. FAs and their degree of
saturation can influence the intensity and location of bands in
their Raman spectra (Baeten et al., 1996; Li-Chan, 1996; Ozaki
et al., 1992). Raman bands observed in fats and oils near 1750,
1660, 1470, 1443, 1306, and 1269 cm¡1 are assigned undoubt-
edly to the CHO stretching modes, CHC stretching modes,
CH2 scissoring modes, CH2 twisting modes, and CH in plane
deformation modes. The frequencies of the CDC stretching
bands of unsaturated FAs (UFAs) are very sensitive to the
configuration around the CHC bond. Thus trans and cis UFAs
give the CHC stretching band in the 1670–1680 and
1650–1665 cm¡1 regions, respectively. It has been demon-
strated that the iodine value (IV), which is a number widely
used to indicate the unsaturation level of fat-containing food
products, can be estimated directly by measuring the Raman
spectra of the food. In particular, it has been noted that oils
with high IVs provide an intense CHC stretching band
(1660 cm¡1). Some authors have also suggested that a compari-
son in the 1500–1700 cm¡1 region gives a practical guide for
the examination of the unsaturation level of fat-containing
food products (Li-Chan, 1996; Ozaki et al., 1992).

Nuclear magnetic resonance

The physical basis of NMR, a spectroscopic technique based on
the fact that certain atomic nuclei possess an angular magnetic

moment, was first described by the groups of Bloch (Bloch
et al., 1946) and Purcell (Purcell et al., 1946), for which they
were awarded the 1952 Nobel Prize. The most commonly mea-
sured nuclei are 1H and 13C, although nuclei from the isotopes
of many other elements can be observed (23Na, 31P, etc.). All
nuclei are electrically charged, therefore, when an external mag-
netic field is applied, two spin states exist. NMR aligns magnetic
moments with an applied constant magnetic field and disturbs
this alignment using an orthogonal alternating radio frequency
magnetic field. This disturbance induces a resonant phenome-
non, which is used in NMR measurements. The signal obtained
can be measured in many ways and then processed to generate
an NMR spectrum for analysis use.

NMR technique was initially used in the late 1940s to eluci-
date the structure of molecules in organic chemistry (Gutowsky
et al., 1949). However the diverse applications of NMR tech-
nique in food science were delayed until the 1980s, primarily
due to lack of scientific expertise, high cost of equipment and
the absence of NMR parts designed specifically for food pur-
poses (Marcone et al., 2013), although pulsed NMR had been
applied to foods earlier. Nowadays, NMR technique has been
studied for fat and FA analysis in a wide range of food matrices
without destroying the sample or producing hazardous wastes.
At present, there are two main types of NMR instrument
widely applied to food analysis: (i) low-field nuclear magnetic
resonance (LF-NMR) (also called time-domain NMR) and (ii)
spectroscopic NMR (signal versus frequency). LF-NMR repre-
sents a simplified and cheaper version of a traditional NMR
instrument and operates in the frequency range of 2–25 MHz
(Aursand et al., 2006). LF-NMR can provide important infor-
mation about relaxation and diffusion behavior and is capable
for online quality control. Spectroscopic NMR provides peaks
(at given frequencies) corresponding to certain molecules of
the sample under test. In addition, magnetic resonance imaging
(MRI), which is usually considered as an extension of NMR,
can further permit visualization of spatial distribution informa-
tion on nuclear spins compared with NMR. MRI is performed
with an NMR instrument equipped with magnetic gradient
coils that can spatially gather the data thus creating two-dimen-
sional (2D) and three-dimensional (3D) images that display
areas having different physico-chemical properties with differ-
ent contrasts. In other words, MRI provides spatial distribution
of the signal due to presence of gradient in three axes.

Hyperspectral imaging

HSI is a new but rapidly growing technique that integrates
spectroscopic and imaging techniques together to provide both
spectral and spatial information simultaneously. It was origi-
nally developed for remote sensing (Goetz et al., 1985), and has
currently emerged as a powerful tool for nondestructive assess-
ment of food quality and safety. HSI can be carried out in
reflectance, transmission, scattering, and transflectance or fluo-
rescence modes in the field of food analysis. Hyperspectral
images are 3D in nature, with two spatial dimensions and one
spectral dimension. Therefore, HSI makes it possible to obtain
the spectral information at each pixel of the hyperspectral
images, and also the image information at each covered wave-
length. Compared to conventional spectroscopic techniques,
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the added spatial dimension enables the mapping of chemical
components in a sample (chemical imaging), which is particu-
larly useful for nonhomogeneous samples.

Generally, there are three approaches for acquiring 3D
hyperspectral cubes [hypercubes (x, y, λ)] (Fig. 2), namely,
point-scan, line-scan, and area-scan methods. In the point-scan
method (i.e., the whiskbroom method), a single point is
scanned along two spatial dimensions (X and Y) by moving
either the sample or the detector. A spectrophotometer
equipped with a point detector is used to acquire a single spec-
trum for each pixel in the scene. Hyperspectral image data are
accumulated pixel by pixel. The line-scan method (i.e., the
push-broom method) is an extension of the point-scan method.
Instead of scanning one point each time, this method simulta-
neously acquires a slit of spatial information as well as full spec-
tral information for each spatial point in the linear field of view
(FOV). A special 2-D image (y, λ), with one spatial dimension
(Y) and one spectral dimension (λ), is taken at a time, and in
this case, the hyperspectral systems need to use the imaging
spectrographs that work in line-scan mode. A complete hyper-
cube is obtained as the slit is scanned in the direction of motion
(X). Different from the spatial-scan methods of point-scan and
line-scan, the area-scan method (i.e., the band sequential
method) is a spectral-scan method. This approach acquires a
2D single-band grayscale image (x, y) with full spatial informa-
tion at once. A hypercube containing a stack of single-band
images is built up as the scan is performed in the spectral
domain. No relative movement between the sample and the
detector is required for this method. Imaging systems using fil-
ters (e.g., filter wheels and electronically tunable filters) operate
by the area-scan method. Since most food products are nor-
mally moved linearly along a production line, the line-scan
method is well suited for online inspection of food quality and
safety. Thus, the line-scan method is widely used for food
analysis.

Applications in fat/FA analyses of muscle foods

Red meats

In the red meat industry, nonstandard quality of the raw mate-
rial, mainly its fat content, plays a crucial role in the economic
and legal aspects of the industry’s production process. By hav-
ing an insight into the basic chemical composition of a raw
material, it is possible to plan a production process thoroughly
and declare the nutritional value of the products on a label as is
commonly desired by consumers for health-related issues. For
instance, excessive fat production has been identified as one of

the major concerns of the beef industry. Over the past two dec-
ades, beef consumption has declined steadily in developed
countries, due in part to health-related concerns.

The FAs composition of meat contributes largely to the
nutritional value of the product (Wood et al., 2008), and also
influences the technological and sensory quality of meat
(Wood et al., 2004). The main components of technological
quality of red meats influenced by FAs are tissue firmness
(hardness), shelf life, and flavor. The effect of FAs on firmness
is due to the different melting points of the FAs in meat. In the
C18 FA series, stearic acid (C18:0) melts at 69.6�C, oleic acid
(C18:1) at 13.4�C, C18:2 at ¡5�C, and C18:3 at ¡11�C, which
show that as the content of UFAs increases, the melting point
declines. The effect of FAs on meat shelf life is explained by the
propensity of UFAs to oxidize leading to the development of
rancidity. There is also production of volatile, odorous, and
lipid oxidation products contributing to meat flavor during
cooking. The FAs composition of ruminants can vary greatly,
depending on different factors such as animal breed (Bressan
et al., 2011; Malau-Aduli et al., 1998, Perry et al., 1998), feeding
regime (Aharoni et al., 1995; Noci et al., 2007), n-3 and n-6
addition (Herdmann et al., 2010), conjugated linoleic acids
(CLAs) supplementation (Schiavon et al., 2010), age and body
weight (Link et al., 1970; Maltin et al., 1998), and additive
genetic factors (Oka et al., 2002; Pitchford et al., 2002; Nogi
et al., 2011). Therefore, large-scale recording of fat content and
FA information is critical for red meat industry. This section
reviews the applications of NIRS, RS, NMR, and HSI techni-
ques in prediction of fat content and FAs composition in red
meats, namely, pork, beef, and lamb meat.

Fat content
Both marbling and intramuscular fat (IMF) are important
parameters for description and evaluation of fat content in red
meats. Marbling is defined as the amount and spatial distribu-
tion of visible white flecks of fat present within the lean in the
carcass rib-eye region. It is generally accepted that an appropri-
ate degree of marbling has a favorable effect on meat juiciness,
tenderness, palatability, and flavor (Emerson et al., 2013; Platter
et al., 2003; Thompson, 2004; Wheeler et al., 1994). Marbling is
often considered as an important characteristic that directly
affects consumers’ consumption decisions. It is an important
assessment index for categorizing the quality of carcasses and
there is often a very high correlation between marbling score
and meat price. The marbling degree of meat is largely variable,
which can be dependent on many factors, such as animal breed,
sex, diet, age, and weight at slaughter (Bosch et al., 2012; Correa
et al., 2006; Olivares et al., 2009). However, marbling levels are

Figure 2. Different approaches to acquire hyperspectral cube: (a) point-scan, (b) line-scan, and (c) area-scan.
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currently assessed by experienced assessors by visually compar-
ing standardized charts with meat samples. This visual
appraisal method is subjective and it is difficult to maintain
consistency between different marbling assessors. IMF quanti-
fies the fat found between muscle fiber bundles within the rib-
eye and is commonly determined by chemical extraction
method. IMF content is also considered to be one of the most
important traits determining the quality of meat (ElMasry
et al., 2012), and it is a key factor that influences the sensory
and cooking quality of meat and also the eating satisfaction of
consumers (Fernandez et al. 1999b; Morlein et al. 2005). As
marbling is an important parameter for red meats while with
different features, its determination applications are summa-
rized separately in this manuscript.

Evaluation of marbling scores of red meats. Marbling is a
parameter based on the spatial distribution of visible white
flecks of fat, so the point-detection spectroscopic techniques
such as NIRS, RS, and NMR are commonly not suited. To our
knowledge, only HSI technique has so far been applied to deter-
mine marbling scores of red meats. HSI system integrates both
spectroscopic and imaging techniques together; therefore, it
has advantages over conventional computer imaging technique
for marbling analysis. Series of studies conducted at McGill
University have shown great potential of HSI technique com-
bined with advanced image processing methods for pork mar-
bling analysis. Qiao et al. (2007) used the HSI technique (430–
1000 nm) to determine marbling scores of pork for the first
time. The authors first imaged the NPPC marbling standards
(from 1.0 to 10.0) and extracted the image texture indices using
the angular second moment (ASM), which were used as indica-
tors of the uniformity degree and size of textures. Images of
samples at 661 nm where the contrast between lean meat and
marbling was more obvious were selected to estimate the mar-
bling scores. The authors showed that ASM could successfully
discriminate the marbling scores of pork except for the stan-
dard score 10.0. However, the predicted results were higher
than those obtained subjectively with an error around 1.0,
which was probably due to the stronger halation of the fresh
pork samples compared to the digitalized marbling standards.
Liu et al. (2012) improved the Qiao et al. (2007) study by con-
sidering marblings as kind of line patterns, which were
extracted using the wide line detector (WLD) technique. The
proportion of marbling (PM) obtained using the WLD analysis
on digital color images of marbling standards was applied to
determine marbling scores. The techniques allowed improved
detection of marbling not only for the red samples (RFN and
RSE quality grades, with typically good contrast) but also for
the more difficult pales samples (PSE and PFN quality groups)
which traditionally have presented difficulty in assessing mar-
bling due to poor contrast and light reflective problems. Thus,
the work showed the high potential of using the WLD tech-
nique for developing an automatic marbling score assessment
system. In the same work, Liu et al. (2012) considered the use
of PM calculated at three wavelengths, namely, red (720 nm),
green (580 nm), and blue (460 nm) channels (RGB channels)
to predict marbling scores. It was shown that although the PM
at the three combined channels strongly correlated with mar-
bling scores of pork samples, the value calculated at the blue

channel alone was sufficient to predict marbling scores. The
results imply that a simple spectral system could be designed
and used for marbling scores assessment based on the WLD
technique. Later, Huang et al. (2013) continued the work and
compared assessment of pork marbling using the WLD and an
image texture extraction technique based on an improved
GLCM algorithm. PM was calculated as in previous studies
whereas image texture feature index was obtained from the
improved GLCM-based image textures. Unlike the earlier
work, pork sample image features were extracted from the red,
green, and blue channels as well the combined RGB channels.
The predictive ability of WLD technique was compared with
image texture analysis based on an improved GLCM technique.
The authors demonstrated that the WLD-based technique per-
formed better than the GLCM-based technique for marbling
score determination. The work also confirmed that the com-
bined RGB channel was suitable for predicting pork marbling
scores. However, contrary to the Liu et al. (2012) study, the
green channel was found to also have stronger predictive ability
for pork marbling score. This could be attributed to the differ-
ent marbling standards used in the studies. The green channel
worked better when pork samples were used whereas the blue
channel was better when the digitized NPPC standard was
used.

More recently, in another study using HSI images between
900 and 1700 nm, Huang et al. (2014a) compared three image
analysis techniques of Gabor filter, WLD, and spectral averag-
ing for pork marbling analysis, which were used to extract the
image indices of texture, line, and spectral features, respectively.
The authors first applied the stepwise regression procedure to
determine the optimal wavelengths, and then the multiple lin-
ear regression (MLR) models were built based on them. Their
results revealed that Gabor filter gave the best prediction result,
with the correlation coefficient in validation set (RV) of 0.90,
using the derivatives of image textures at 961, 1186, and
1220 nm, which indicated the feasibility of multispectral imag-
ing (MSI) for online inspection of pork marbling.

Prediction of fat content of red meats. Prediction of fat content
using NIRS. The ability of NIRS to predict fat content in meat
was examined extensively by many researchers. The main stud-
ies reported on prediction of fat content in red meats during
the last two decades are summarized in Table 1, with the pre-
diction accuracy expressed in the terms of correlation coeffi-
cient (R), determination coefficient (R2), standard error (SE),
or root mean standard error (RMSE) in validation set, calibra-
tion set, and/or cross-validation of the calibration set. Different
authors have reported different model accuracies for different
meat species, either in laboratory tests or online determina-
tions. The prediction accuracies can depend on the NIR spec-
troscopic instrumentation, measurement mode, spectral range,
data analysis method employed, number of samples, and the
nature of sample presentation (intact or minced) applied.
Hardware of different NIRS instruments can be different lead-
ing to different detection accuracies. The initial studies worked
with numerous filters to obtain the light of different wave-
lengths, whereas modern NIRS has monochromators that act
as wavelength selectors, allowing samples to be scanned over
an entire spectral region at a time. For instance, in the work
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conducted by Tøgersen et al. (1999), a filter wheel rotating at
20 Hz containing five interference filters was used for acquisi-
tion of reflectance spectra. Sample presentation also has an
important effect on prediction accuracy. Cozzolino and Murray
(2002) compared its effect on predictions of fat content in beef
and lamb meat, and their results show that the minced presen-
tation is a better way to analyze meat samples using NIRS, com-
pared to intact presentation. Thus, the efficiency of NIRS in
predicting fat content in meat is usually better with minced,
ground, and homogenized samples than it is with intact sam-
ples. Further, the effect on prediction accuracy has also been
studied for different grinding sizes, which concluded that the
finer the grinding, the higher the prediction accuracy (Tøgersen
et al., 2003). The number of samples used to develop calibration
models also influences the prediction accuracy. The literature
shows that the number of samples used by different authors
varies mostly between 30 and 150. However, Zamora-Rojas
et al. (2011) conducted a work on predicting the fat content of
different Iberian pork muscles using a large data set (n D 310/
342) with a wide range of reference values. The authors
reported remarkable prediction with RCV

2 and SECV in the
range of 0.98–0.99% and 0.35–0.36%, respectively, for homoge-
nized meat. Compared to other studies published in this field,
the work ensured realistic robustness of the calibration models
by using a large data set. Further, calibration models can be
established based on different muscle types, which may consist
of a single muscle from different carcasses, different muscles
from a single meat species and even a mixture of ground meat
of different species (Tøgersen et al., 1999). Depending on such
difference, the prediction accuracy can also be different. Almost
all the studies were conducted using the NIR reflectance spec-
tra, except an early study reported by Lanza (1983), in which
transmittance spectra were compared with reflectance spectra
for fat content prediction in emulsified pork paste. Their results
showed that the reflectance spectra between 1100 and 2500 nm
gave more accurate prediction results than transmittance.

Several studies (Cozzolino and Murray, 2002; Hoving-
Bolink et al., 2005; Barlocco et al., 2006; Roza-Delgado et al.,
2014; Balage et al., 2015) showed poor modeling results for fat
content prediction in intact meat samples. The reason can be
attributed to the fact that NIR spectroscopic method is a point
detection technique, which can only cover small information of
the tested sample, and thus have limitation for nonhomoge-
neous sample, such as intact meat. Additionally, in intact meat
samples, the muscle fibers or myofibrils themselves may act as
optical fibers tending to conduct NIR light along their length
by a series of internal reflections, absorbing more energy and
giving less reflectance when comparing with homogenized
meat, which may lead to poorer modeling results for intact
meat samples. In a study conducted by Hoving-Bolink et al.
(2005), two reasons for low prediction results were recognized:
one is as mentioned earlier; the other reason is due to the lim-
ited variation of the tested samples in fat content. However, the
authors stated in this work that by using a NIRS with a larger
sampling area (laboratory system with a sampling area
of §5 cm2), a RC

2 of 0.70 can be achieved.
Most of the reported studies dealing with the ability of NIRS

to determine fat content of meat aimed at exploring the possi-
bility to replace conventional laborious and time-consuming

analysis, and were thus made under the laboratory conditions.
Only three studies (Tøgersen et al., 1999; Tøgersen et al., 2003;
Anderson and Walker, 2003) explored the prediction ability of
NIRS for on-line determination of fat content in meat under
industrial conditions. In Anderson and Walker’s work (2003),
they developed an on-line spectral analysis system for predic-
tion of fat content in heterogeneous ground beef streams. The
Perten diode-array type Vis/NIR spectrometer, which moved at
1.0 m/min was used to take reflectance measurements from the
meat stream. The SEPs reported by the authors for the 27-kg
block-sized samples and the entire 400-kg block were
2.15–2.28% and 0.70–1.05%, respectively. Similarly, good
modeling results were also obtained in the two studies reported
by Tøgersen et al. (1999, 2003) for ground meat. However, as
to our knowledge, no work has been published on on-line pre-
diction of fat content in intact meat under industrial conditions
using NIRS technique.
Prediction of fat content using RS. Compared to the wide appli-
cations of NIRS in red meats, only limited studies have been
reported on analyzing meat fats by RS technique. Using RS
technique between 270 and 1900 cm¡1 with line-focused
785 nm excitation, Beattie et al. (2007) conducted a study to
classify the intact adipose tissues from four different species
(pork, beef, lamb, and chicken). Four classical multivariate
methods which consisted of partial least squares discriminant
analysis (PLSDA), principal component linear discrimination
analysis (PCLDA), Kohonen and feed-forward artificial neural
networks were applied, and the best classification accuracy of
99.6% was obtained by performing PLSDA method in their
work. Further, another study was reported on using the poly-
morphic features of fats detected by RS to discriminate their
animal-fat origins (Motoyama et al., 2010). The authors found
that a single Raman band at 1417 cm¡1, which is the character-
istic band of b’-polymorph of fats, could successfully differenti-
ate pork fats from beef fats. Moreover, based on the Raman
spectra of the extracted fat, successful classification of seven dif-
ferent meat species (pig, cattle, sheep, fish, poultry, goat, and
buffalo) and their salami products was obtained by Boyaci et al.
(2014). As to our knowledge, no study has been reported so far
on quantitative determination of fat content in red meats using
RS.
Prediction of fat content using NMR. Many studies have shown
the potential of using NMR and MRI to predict fat content in
red meats. Sørland et al. (2004) investigated the feasibility of
LF-NMR for determination of fat content within a series of
minced beef and pork samples in both fresh and dry presenta-
tions. In this work, the multipulsed magnetic field gradient
spin echo (m-PFGSE) was applied for NMR tests, and the
authors observed that for fresh samples, the recording of the fat
signal started when the water signal was suppressed to an insig-
nificant amount using the m-PFGSE sequence, and when the
protein signal decayed due to a short T2 relaxation time. Based
on that, good agreement was obtained between the NMR and
reference chemical method, with RC of 0.975 for fresh beef, and
also high correlation shown between the NMR values predicted
within fresh and dry pork. Brøndum et al. (2000) compared the
performance of four spectroscopic instruments, which con-
sisted of a fiber optic probe, a Vis/NIR reflectance spectropho-
tometer, a reflectance spectrofluorometer and a 1H LF-NMR
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for rapid determination of fat content of two intact pork
muscles (longissimus dorsi and semitendinosous). Their results
showed that LF-NMR with the inversion recovery sequence
gave the best modeling result, with RC and SEC of 0.77% and
1.13%, respectively, though still not accurate enough. Using
microwave as the drying method, Keeton et al. (2003) investi-
gated the potential of the SMART Trac NMR system for fat
content prediction in a range of dried meats and meat products,
which consisted of low-fat pork, high-fat ground beef, deboned
chicken with skin, all-beef hot dogs and U.S. National Institute
of Standards and Technology (NIST) standard reference mate-
rial. Their work showed that the NMR system could provide
results comparable with those obtained by the AOAC methods
except for the results of the high-fat (30–50%) beef sample and
the NIST standard. In addition, the authors also examined the
effects of sample weight, drying temperature and sample tem-
perature on NMR prediction, and indicate that some factors
have adverse effects on fat prediction. Further, Leffler et al.
(2008) reported a collaborative work on prediction of fat con-
tent in a variety of dried meats (beef, pork, chicken, and turkey)
and processed meats (beef hot dog, pork sausage, and ham) by
NMR operating at 0.47 Tesla. Statistical analysis for total fat
yielded similar relative standard deviation for repeatability
(RSDr) and relative standard deviation for reproducibility
(RSDR) range of 0.74–4.08%, which demonstrates that NMR
combined with microwave drying is an effective method pro-
viding results equivalent to AOAC Methods 960.39 (Soxhlet
Ether Extraction) in raw and processed meat products. More
recently, to quantify the fat content in the trapezius muscle of
live cattle, Nakashima (2015) developed a prototype NMR
scanner (4.1 MHz for protons), which includes an original sin-
gle-sided permanent magnet with depth of investigation of
30 mm and a sensed region as compact as 19£19£16 mm3.
A measurement error of as small as approximately 10 wt.% was
achieved in this work, which indicated that the prototype devel-
oped based on NMR would enable the in vivo fat content
assessment of live cattle.

Compared to NMR spectroscopic method, MRI could pro-
vide additional spatial distribution information of fat in meat,
which is an important trait in meat quality grading. An early
study was reported for mapping the fat distribution in retail
quality lamb using MRI technique with chemical shift selective
imaging and T1 weighting methods (Tingle et al., 1995). Their
results show that T1 weighting method has significant speed
advantages over the chemical shift selective method for visuali-
zation of fat distribution in lamb, while for samples with very
low fat content, the complete selectivity of the chemical shift
technique would be required. Ballerini et al. (2002) reported a
preliminary study for determination of fat content in heifer
longissimus dorsi muscle by NMR image analysis. In this work,
fat visualization was realized through a proposed segmentation
algorithm, which included the steps of background suppres-
sion, nonuniformity removal by use of median filtering and fat
extraction. Although the correlation between the mean fat con-
tent measured by chemical analysis and the presented method
(RC D 0.77) was higher than that achieved using the digital
images of the same meat samples (RC D 0.58), it is still consid-
ered low and the improving is needed. Recently, Lee et al.
(2015) reported a study with beef by applying MRI technique

to visualize and predict its IMF distribution. This study was
based on the intensity difference between fat and lean meat
content in the proton spin-lattice relaxation (T1) weighted MRI
image, which is considered to produce distinct results upon
image processing. Their results showed a strong correlation
between the MRI predicted and chemically measured IMF val-
ues, with RC

2 of 0.98. The distribution uniformity of IMF
within beef was evaluated by calculating their distribution and
pixel size in the MRI images according to four levels of beef
quality grade (1C, 1, 2, and 3), which is considered reliable for
beef grading, however, the authors did not give the prediction
accuracies for grading different levels of beef samples in their
work.

In addition, MRI also shows great potential for fat analysis
in pig carcass. Monziols et al. (2005) reported a method to
quantify the amount of fat tissue in gradient echo magnetic res-
onance images, which provides segmentation of pure tissue and
partial volume voxels, allowing separation of muscle and fat tis-
sue including the fine insertions of intermuscular fat. Subse-
quently, Monziols et al. (2006) conducted another study to
explore the suitability of LF-MRI for prediction of subcutane-
ous fat and intermuscular fat contents in pig carcasses and cuts.
They obtained good agreements between the MRI measured
and the reference values for total fat and subcutaneous fat, with
RC

2 in the range of 0.951–0.986 and 0.918–0.994, respectively.
However, the RC

2 for intermuscular fat content was low with
the exception of belly (RC

2 D 0.798–0.837).
Prediction of fat content using HSI. A number of studies have
revealed HSI as a promising tool for prediction and visualiza-
tion of IMF content in red meats. The first study was reported
by Kobayashi et al. (2010) on applying HSI technique to predict
and visualize fat content in beef. By extracting the mean spectra
between 1000 and 2300 nm from the obtained hyperspectral
images, PLSR model was established for fat prediction which
gave a RP

2, SEP, and (residual prediction deviation) RPD of
0.90, 4.81% and 2.84%, respectively. By applying the obtained
model to each pixel of the hyperspectral images, the visualiza-
tion map for showing the distribution of fat content in each
sample was produced. Subsequently, another work was con-
ducted to predict fat content in intact lamb meat originated
from different breeds and different muscles (Kamruzzaman
et al., 2012). Likewise, they extracted the mean spectra for
model development, and based on the spectral information
between 900 and 1700 nm, satisfactory prediction result was
obtained, with RP

2 and SEP of 0.88 and 0.40%, respectively. In
addition, using the regression coefficients resulted from PLSR
analyses, the feature wavelengths of 960, 1057, 1131, 1211,
1308, and 1394 nm were identified for quantifying fat content
in lamb meat, and based on these determined optimal wave-
lengths, a simplified prediction model was obtained, with RP

2

and SEP achieving 0.87% and 0.35%, respectively. The chemical
images were also created in their work. Using the same HSI sys-
tem with Kamruzzaman et al. (2012), Barbin et al. (2013) also
obtained satisfactory results for prediction of fat content in
both minced and intact pork, with RP

2 and SEP of 0.95 and
0.37%, 0.83 and 0.76%, respectively. The wavelengths of 927,
937, 990, 1047, 1134, 1211, 1275, 1382, and 1645 nm were iden-
tified as feature-related for prediction of fat content in
pork. Fig. 3(a) shows their distribution maps of fat content of
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each intact pork muscle created using the feature wavelengths,
in accordance with the pseudo-color image composed by
concatenating three selected wavelengths (1081, 1275, and
1329 nm) to represent the R, G, and B color channels in Fig. 3
(b). #3Similarly, ElMasry et al. (2013) obtained a RP

2 and SEP
of 0.84% and 0.65% for determination of fat content in intact
beef, which was comparable with the aforementioned lamb and
pork meat.

Other than only using the spectral information extracted
from hyperspectral images, Liu and Ngadi (2014) and Huang
et al. (2014b) explored using different image features combined
with spectral information to determine the IMF content in
pork. In the study reported by Liu and Ngadi (2014), they first
extracted the visual IMF flecks on both sides of pork samples
by using the WLD algorithm as mentioned earlier, and then
the proportions of IMF fleck areas at critical wavelengths were
used to predict the IMF content. The adjusted RP

2 and RMSEP
of 0.93% and 0.17% were achieved, respectively in this work,
which is superior to the prediction accuracy reported by Barbin
et al. (2013) with pork. Huang et al. (2014b) applied three
image analysis techniques of spectral averaging, Gabor filter
and improved GLCM to extract the raw spectral, texture-based
spectral and textural characteristics of pork images, respec-
tively. Using the first derivative of Gabor filtered spectra at
1193 and 1217 nm, the best prediction result was achieved with
RP of 0.86. More recently, Lohumi et al. (2016) reported a work
on beef by using HSI technique over the spectral range of 400–
1000 nm. In this study, three chemometric techniques includ-
ing analysis of variance (ANOVA), spectral similarity measures
of spectral angle measure (SAM), and Euclidian distance mea-
sure (EDM) were applied and compared. Their results showed
that the spectral similarity measure methods outperformed the
ANOVA based ratio-image method for IMF content analysis,
in terms of overall classification and quantification accuracies.
Their work achieved the RC

2 of 0.91, 0.95, and 0.96 by using
ANOVA, SAM, and EDM methods, respectively; however, it
needs to be noted that the number of samples involved was

small (n D 24) and also the models developed were not vali-
dated using independent samples. Regarding beef, Wold et al.
(2011) reported a further study on on-line predicting fat con-
tent in beef trimmings using a calibrated NIR imaging scanner,
which covered 15 wavelengths between 760 and 1040 nm with
a spectral resolution of 20 nm. In their work, the satisfactory
RCV and RMSECV of 0.98 and 3.0% were achieved, and also
the image for visualization of fat distribution was produced.
Simulations based on true measurements indicate that the
RMSEP decreases with increasing batch size and, for the case of
100 kg batches, it reached about 0.6%. The test on six batches
of intact trimmings varying from 145 to 210 kg also gave simi-
lar fat estimates as an established microwave system obtained
on the ground batches. The study reveals that the simplified
HSI (MSI) is applicable to online estimate fat content in trim-
mings and also to control the production of batches to different
target fat levels. More recently, Ma

�
ge et al. (2013) developed

and tested a system which consisted of a NIR imaging scanner,
a conveyor belt, a flow weigher and grader and a host computer
containing synchronizing software and a sorting algorithm for
on-line sorting of meat (pork and beef) trimmings into catego-
ries with different fat levels by simulations and pilot-plant tri-
als. The simulation results showed generally low bias (< 2%)
for either category, which therefore indicates the great potential
of their developed system for online implementation.

FAs composition

Prediction of FAs composition using NIRS. NIRS has shown its
potential for predicting FAs composition in melted fats, adi-
pose, and meat tissues with different grades of accuracy.
Among different breeds of pork, Iberian pork is widely
accepted by consumers owing to its special characteristics. In
order to explore a rapid way to determine the FAs composition
of Iberian pork, series of studies have been carried out using
NIRS. An early study was reported by Gonz�alez-Mart�ın et al.
(2002), in which they investigated the capability of NIRS

Figure 3. Images for intact pork samples: (a) concentration map of fat content and (b) pseudo-color image (Barbin et al., 2013).
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(1100–2498 nm) with the so-called “Cam-lock cups” cells in
transflectance mode for determination of FAs composition in
the subcutaneous fat of Iberian pigs. In this work, two methods
for collecting the total reference fat were compared, namely,
extraction with solvents and microwave melting. With the fat
extraction by solvents, their results show that the NIRS tech-
nique allows the determination of 12 individual FAs of C12:0,
C14:0, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1, C18:2, C18:3,
C20:0, and C20:1, and total SFAs, mono-unsaturated
FAs (MUFAs) and poly-unsaturated FAs (PUFAs) with RC

2 of
0.84, 0.70, 0.89, 0.75, 0.62, 0.66, 0.85, 0.91, 0.88, 0.77, 0.85, 0.66,
0.92, 0.89, and 0.90 respectively, and SECV for these FAs of
0.012%, 0.109%, 0.66%, 0.24%, 0.04%, 0.04%, 0.54%, 1.15%,
0.49%, 0.12%, 0.03%, 0.23%, 0.82%, 1.12%, and 0.52%, respec-
tively. While using the fat extraction by microwave melting, the
NIRS method only achieved satisfactory results with 6 individ-
ual FAs of C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, and
group FAs of total SFAs, MUFAs, and PUFAs with RC

2 of 0.93,
0.70, 0.88, 0.90, 0.83, 0.63, 0.95, 0.92, and 0.82, and SECVs of
0.48%, 0.24%, 0.65%, 1.13%, 0.59%, 0.10%, 0.83%, 1.24%, and
0.69%, respectively. Subsequently, based on the same NIR
instrument, Gonz�alez-Mart�ın et al. (2003) compared the deter-
mination results of FAs in the intact subcutaneous fat and
extracted subcutaneous fat of Iberian pigs, with the assistance
of a standard reflectance fiber optic probe (1100–2000 nm) and
“Cam-lock cups” (1100–2498 nm), respectively. The predictions
using the fiber optic probe for intact samples gave the RP

2 for
C14:0, C16:0, C18:0, C18:1, C18:2, C18:3, and C20:1, total
SFAs, MUFAs and PUFAs of 0.72, 0.94, 0.72, 0.79, 0.88, 0.55,
0.17, 0.90, 0.74, and 0.88, respectively, and SEP for these FAs of
0.11%, 0.60%, 0.84%, 1.20%, 0.77%, 0.11%, 0.30%, 1.18%,
1.21%, and 0.76%, respectively. The predictions for extracted
samples by “Cam-lock cups” achieved the RP

2 of 0.53, 0.93,
0.84, 0.85, 0.87, 0.49, 0.43, 0.97, 0.90, and 0.85 for the above-
mentioned FAs, with SEP of 0.13%, 0.59%, 0.58%, 0.97%,
0.77%, 0.12%, 0.24%, 0.66%, 0.75%, and 0.84%, respectively.
Furthermore, Gonz�alez-Mart�ın et al. (2005) applied NIRS with
reflectance fiber optic probe to determine FAs composition in
IMF of Iberian pork. Their results showed the multiple correla-
tion coefficients (RSQs) of 0.785, 0.798, 0.788, 0.825, 0.762,
0.765, 0.696, 0.859, 0.878, 0.807, 0.943, 0.858 for individual FA
of C14:0, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1, C18:2,
C18:3, and total PUFAs, MUFAs and SFAs, respectively, and
SECV of 0.08%, 0.63%, 0.26%, 0.02%, 0.02%, 0.51%, 0.77%,
0.64%, 0.05%, 1.06%, 0.34%, and 0.70%, respectively. In addi-
tion, by rapid prediction of the four main FAs (C16:0, C18:0,
C18:1, and C18:2) in Iberian pig adipose tissue samples, De
Pedro et al. (2007) implemented NIRS (400–2500 nm) with a
fiber optic probe as an integral part of Iberian pork quality con-
trol programs and/or traceability systems. In this work, they
reported the SECV of 0.38%, 0.36%, 0.59%, and 0.23% for
C16:0, C18:0, C18:1, and C18:2, respectively, which indicate the
high potential of NIRS combined with the fiber optic probe for
rapid FAs composition determination in Iberian pork analysis.

Apart from Iberian pork, there are also plenty of studies
conducted on other breeds of pork using NIRS. Using Fourier
transform-NIR (FT-NIR) reflectance and transmission between
11000 and 4000 cm¡1 (900–2500 nm), Ripoche and Guillard
(2001) conducted an exploratory study to determinate the FAs

composition in pork fat slices and extracts. Their results
showed the validity of NIR transmission to estimate total
SFAs, MUFAs, and PUFAs, and individual FA of C16:0, C18:0,
C18:1, and C18:2 in pork fat extracts with high RCV

2 values,
while the predictions using NIR reflectance for direct measure-
ments on fat slices were less good, which only gave RCV

2s
between 0.69 and 0.79 for total SFAs and PUFAs, and individ-
ual FAs of C18:1 and C18:2 (Table 2). Based the NIR transflec-
tion spectra between 400 and 2500 nm, Gjerlaug-Enger et al.
(2011) tested the FAs composition and IV of melted subcutane-
ous fat of pig carcasses. They reported superior prediction
results for total SFAs, MUFAs, PUFAs, and IV, with RP

2 and
SEP of 0.95 and 0.49%, 0.97%, and 0.65%, 0.99% and 0.34%,
and 0.97% and 1.22%, respectively. Good prediction results
were also obtained for individual FA of C18:2 n-6, C16:1 n-7,
C18:0, C18:1 n-9, and C16:0, with RP

2 and SEP of 0.84% and
0.87%, 0.89%, and 0.10%, 0.96% and 0.64%, 0.94% and 0.44%,
and 0.98% and 0.29%, respectively. By employing a relatively
large data set of samples collected from 155 batches of pig car-
casses, M€uller and Scheeder (2008) reported the RP

2 of
0.98, 0.88, and 0.96 concomitant with the relative SEP of 0.9%,
1.6%, and 4.7% for prediction of total SFAs, MUFAs, and
PUFAs, respectively by applying NIRS in homogenized fat
tissue.

For intact fat tissue, Prieto et al. (2014) tested the ability of
NIR reflectance technique (400–2498 nm) to estimate the FAs
composition and IV in intact subcutaneous fat of pigs fed
reduced-oil corn dried distillers grains with solubles (cDDGS)
at 4�C and 35�C. They obtained good results for prediction of
the proportions of total SFAs, MUFAs, PUFAs, n-3, and n-6
FAs and individual FAs of C16:0, C18:1, C18:2 n-6, and C18:3
n-3 (RC

2s: 0.80–0.89; RMSECVs: 0.21–1.37% total FA) at both
cold (4�C) and warm (35�C) temperatures. The RC

2 and
RMSECV for IV were 0.90% and 1.66%, and 0.87% and 1.80%,
respectively, with cold and warm samples, respectively. How-
ever, in this work, the acquisition of NIR spectra needs assis-
tance of a special sampling device with samples cut to 7 mm to
fit it, which makes it unpractical for industrial use. The industry
is more interested in simplification of the sampling presenta-
tion with low-cost instrumentation. For such purposes, P�erez-
Juan et al. (2010) prove that NIRS with the fiber optic probe is
promising. The authors collected the reflectance spectra
between 909 and 2500 nm by direct application of a fiber optic
probe transversally and longitudinally in each subcutaneous fat
sample. Their results show that total SFAs, MUFAs, and
PUFAs as well as oleic and stearic FAs can be predicted accu-
rately (RP

2 > 0.70). Additionally, the authors found no obvious
prediction differences between positioning the probe transver-
sally and longitudinally during tests.

Further efforts were also made on developing and optimiz-
ing NIRS technique for FAs characterization in live pigs and
carcasses in the slaughterhouse. Based on spatially resolved
NIR transmission spectroscopy, Sørensen et al. (2012) reported
a measurement method to determine porcine carcass fat quality
as a function of the distance to the skin by estimating its IV,
which is capable of performing on-line at full production speed
(approximately 1000 carcasses per hour). The authors found
that the IV of porcine carcass varied as a function of feeding
regime and fat depth. By using interval PLS (iPLS) regression
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method, they obtained a low RMSECV of 1.44 g for predicting
IV of the porcine adipose fat tissue online at a given measured
depth, which indicates that their presented method can provide
the abattoir new possibilities for meat/carcass grading and
product development by using their fat quality information.
P�erez-Mar�ın et al. (2009) also conducted an exploratory work
by using NIRS combined with a fiber-optic contact probe to
predict four main FAs in Iberian pig fat, which included pal-
mitic acid, stearic acid, oleic acid, and LA. In this work, five
sampling modes were applied, namely from the live animal
(Fig. 4(a)), from the carcass in the slaughterhouse (Fig. 4(b)),
from a subcutaneous fat sample with skin (Fig. 4(c)), from a
skin-free subcutaneous fat sample, and from a transverse sec-
tion. They obtained the SECV of 1.24% in vivo analysis and
0.82% for carcass analysis for palmitic acid, 0.67% and 0.94%
for stearic acid, 1.42% and 1.48% for oleic acid, and 0.36% and
0.55% for LA, respectively, which demonstrates the feasibility
of NIRS for on-site inspection and control of Iberian pig FAs
composition, both in the field and in the slaughterhouse.

Regarding beef, Realini et al. (2004) employed the NIRS
technique (400–2498 nm) in reflectance mode to characterize
the FAs composition of ground beef from grass-fed and grain-
fed sources. Results from PLSR modeling showed accurate pre-
dictions for total SFAs and UFAs, with RP

2 and SEP of 0.87%
and 1.16%, and 0.90% and 1.18%, respectively. Good predic-
tions were also observed for individual FAs of C18:0, C18:1,
and C18:3, with RP

2 and SEP of 0.91% and 1.2%, 0.92% and
1.27%, and 0.93% and 0.07%, respectively. However, the com-
position of other individual FA was poorly predicted in this
work. Also with ground beef, Sierra et al. (2008) applied the
NIR transmittance spectroscopy (850–1050 nm) to predict its
FAs composition. Their results showed that the NIR transmit-
tance spectra could predict some prominent FAs well, such as
C14:0, C16:0, C16:1cis9, C17:0, C18:1cis9, and C18:1cis11, with
RCV

2s all over 0.76 (Table 2), and also some minor FAs of
C15:0, C17:1cis9, and C18:1cis13 with RCV

2 of 0.798, 0.817, and
0.797, respectively. For FA groups, the RCV

2 obtained for total
SFAs, total MUFAs and branched FAs were 0.837, 0.852, and
0.701, respectively. More recently, another study was reported

by using reflectance NIRS between 1100 and 2498 nm to deter-
minate FAs composition in minced beef samples (longissimus
thoracis muscle), and good cross-validation results (Table 2)
were obtained for total SFAs, MUFAs and PUFAs, 6 major FAs
(C14:0, C:16:0, C16:1, C18:0, C18:1n-9 cis/trans, and C18:1n-11
trans), and also 6 minor FA (C10:0, C12:0, C17:0, C17:1, C18:2
cis-9, trans-11, and C20:2) (Cecchinato et al., 2012). However,
Mourot et al. (2014) did not get satisfactory results in predict-
ing FAs composition of ground beef by using the reflectance
spectra over 400 and 2500 nm, and good cross validation
results were achieved for individual FAs of C16:0, C18:0, and
18:1D9 cis, and FAs groups of total CLAs, SFAs, and MUFAs
(Table 2), which the authors believe is due to the narrow range
of reference data.

Apart from predicting FAs composition in ground beef, sev-
eral studies have also been published on intact beef recently.
Prieto et al. (2011) examined the capability of reflectance NIRS
(1100–1800 nm) with assistance of a fiber optic probe to predict
the FAs composition in intact beef on-line in the abattoir. Beef
samples from two cattle breeds (crossbred Aberdeen Angus and
Limousin) were used in their work, and statistically significant
differences (P < 0.001) were observed in most FAs between
these two breeds, with FA concentration being higher in Aber-
deen Angus meat mainly. Their results showed moderate to
high predictability for C16:0, C16:1, C18:0, C18:1 trans11,
C18:1, C18:2 n-6, C20:1, C18:2 cis9,trans11, total SFAs,
MUFAs, and PUFAs in Limousin samples, with RC

2 and SECV
(g/100 g muscle) of 0.69 and 0.146, 0.69 and 0.028, 0.71 and
0.062, 0.70 and 0.0081, 0.76 and 0.192, 0.65 and 0.013, 0.71 and
0.0009, 0.71 and 0.0029, 0.68 and 0.235, 0.75 and 0.240, 0.64
and 0.017, respectively. However, the results for predicting FAs
in Aberdeen Angus samples were not as good as in Limousin
samples. Using the Vis/NIR reflectance spectroscopy
(400–2498 nm), studies were also reported on prediction of the
contents of PUFAs and biohydrogenation products in the sub-
cutaneous fat of beef cows fed different diets (Prieto et al.,
2012; 2013). Prieto et al. (2012) first compared the modeling
results of NIR reflectance scannings at warm and cold tempera-
tures (31 and 2�C), and suggested 31�C as a proper temperature
for NIRS tests with beef fat. The modeling results with RPD
very close or over 2.0 were summarized in Table 2, and from it,
we can observe that for n-3 PUFAs, only the sample tempera-
ture of 31�C gave accurate results. In addition, it is notable that
in this work the authors also studied the possibility of NIR
reflectance spectra in predicting the ratio of n-6/n-3 which is
an important parameter in a healthy diet; however, the
RMSECV and RPD only reached 0.98 mg/g fat tissue and 1.51,
and 1.07 and 1.44 at 31 and 2�C, respectively. Subsequently,
based the same NIRS instrument, Prieto et al. (2013) compared
prediction of total PUFAs and their biohydrogenation products
in perirenal fat and subcutaneous fat from cattle fed sunflower
or flaxseed, and modeling results with RPD very close or over
2.0 are shown in Table 2. From Table 2, it can be concluded
that NIR reflectance spectra are more reliable for predicting
FAs composition of perirenal fat.

Information on the FA analysis of lamb meat by NIRS is rel-
atively scant. As to our knowledge, only two studies were
published on lamb meat since recently. Guy et al. (2011) com-
pared the feasibility of Vis/NIR reflectance spectroscopy

Figure 4. Collection of NIR spectra in (a) live animals, (b) carcasses, and (c) fat sam-
ples over the skin (P�erez-Mar�ın et al., 2009).
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(400–2500 nm) in predicting FAs composition of ground and
intact lamb meat (Longissimus lumborum). Their results
showed much more accurate quantitative models for ground
lamb meat than for intact meat samples, which is in accordance
with the aforementioned results summarized for fat content
prediction using NIRS. In this work, the obtained SECVs and
RPDs for groups of total SFAs, MUFAs, PUFAs, linear satu-
rated FAs (LSFAs), branched saturated FAs (BSFAs), cis
MUFAs, trans MUFAs, n-6 PUFAs, n-3 PUFAs and CLAs and
individual FAs of C14:0, C16:0, C18:0, C16:1 D9cis, C17:1
D9cis, C18:1 D9cis, C18:1 D11cis, C16:1 D9trans, C18:1 D9
trans, C18:2 n-6, C18:3 n-3, C20:5 n-3, C18:1 D10 C D11 trans,
9cis,11 trans-CLA were good for ground lamb (shown in
Table 2), which indicate the great potential of NIRS for analyz-
ing the FAs composition of ground meat. However, the best
RCV

2 achieved for intact lamb meat was only 0.53 and also all
RPDs obtained lower than 2.0. More recently, another study
was reported by using a high intensity contact probe connected
to a Vis/NIRS (350–2500 nm) to quantify the FAs composition
of lamb meat under commercial abattoir conditions (Pullana-
gari et al., 2015). However, the modeling results obtained were
inferior, as the highest RP

2 only achieved 0.73 among all FA
groups and individual FAs. As shown in Table 2, the prediction
results for total SFAs, MUFAs and PUFAs by using the genetic
algorithm (GA)–based partial least squares (GA-PLS) method
were only achieved with RP

2 of 0.60, 0.60, and 0.67, respectively.
In addition, other than working on individual species of red

meat as above, Mourot et al. (2014) investigated the possibility
of developing universal equations for homogenized ruminant
meats to predict their FAs composition. The reflectance spectra
over the spectral range of 400–2500 nm were collected for
homogenized beef and lamb meat for model development, and
based on that, the RCV

2 and RPD values of 0.68 and 1.76, 0.90
and 3.11, and 0.80 and 2.24 were obtained for LA, total CLAs
and PUFAs, respectively, which indicated the robustness of
NIRS for FA prediction in red meats and also the commonali-
ties among different species of red meats.

Prediction of FAs composition using RS. The first trial of using
RS to predict the FAs composition of unextracted adipose tissue
was reported by Beattie et al. (2006). The samples used in their
investigation were subcutaneous adipose tissue dissected from
above the Longisimus dorsi in the position of the 12th rib for
beef, beef, and lamb, and from above the breast for chicken.
Their results showed that the bulk unsaturation parameters
could be predicted successfully (RP D 0.97, RMSEP D 4.6% of
4s), with cis unsaturation, which accounted for the majority of
the unsaturation, giving similar correlations. The total PUFAs
was also well predicted with RP and RMSEP of 0.97 and 4.0%
of 4s, respectively. However, it was not possible to find a good
prediction model for trans unsaturation, which was explained
to be due to the low range of relative abundances of trans
unsaturated bonds in the adipose tissue (0.031, compared with
0.24 bonds per FA for cis unsaturated bonds). For individual
FAs, the average RMSEP of the 18 most abundant FA was
11.9% of 4s while the prediction errors for the five most abun-
dant FA were all better than the average value (in some cases as
low as RMSEP D 4.7% of 4s). Subsequently, Olsen et al. (2007)
conducted a study to compare the capability of RS (excitation

wavelength at 785 nm) for FAs composition and IV prediction
in intact pork adipose tissue and melted fat. Based on PLSR
modeling method, they obtained for melted pork fat the RCV

and RMSECV (percentage of total FAs) of 0.99% and 0.6%,
0.96% and 1.0%, and 0.98% and 1.0%, 0.98 and 1.4 g for total
SFAs, MUFAs, PUFAs, and IV, respectively, and for intact
pork adipose tissue of 0.96% and 1.1%, 0.91% and 1.5%, and
0.95% and 1.5%, 0.97 and 1.8 g, respectively, which indicated
no obvious difference between melted fat and intact adipose tis-
sue. Their results suggest RS with a ball probe has great poten-
tial for online measurement of FAs composition in intact pork
adipose tissue. However, in another study on intact pork adi-
pose tissue, relatively inferior results were obtained with RC

2

and RMSECV (percentage of total FAs) of 0.50% and 2.24%,
0.57% and 2.28%, and 0.72% and 1.17%, 0.69 and 2.00 g for
prediction of total SFAs, MUFAs, PUFAs and IV, respectively
(Lyndgaard et al., 2011). Further, Olsen et al. (2008) applied RS
to quantify n-6 and n-3 FAs in intact pork adipose tissue and
melted fat. Based on PLSR method, they obtained the RCV and
RMSECV (percentage of total FAs) of 0.97% and 0.99%, 0.91%
and 0.23% for n-6 and n-3 FAs, respectively in melted fat, and
0.95% and 1.43%, and 0.87% and 0.27%, respectively, in intact
pork adipose tissue. More recently, Berhe et al. (2016) reported
a study on predicting FA groups and individual FAs in intact
pork backfat using RS (200–1800 cm¡1) equipped with a
785 nm laser. In this work, they separately recorded Raman
spectra from the inner and outer layers of pork backfat, and
found that the model validation results for total SFAs, MUFAs,
PUFAs, and IV with the inner layer were slightly better than
those with the outer layer of backfat. The average RCV

2 achieved
for total SFAs, MUFAs, PUFAs, and IV was 0.84, 0.81, 0.90,
and 0.89, respectively, and also good agreements were obtained
for individual FA of C16:0, C18:1 cis D9, C18:2 cis D9,12, and
C18:3 cis D9,12,15 with RCV

2 of 0.89, 0.82, 0.90, and 0.87,
respectively. Moreover, Olsen et al. (2010) studied the stability
of a calibration model established from a Raman instrument
for IV prediction of pork adipose tissue during a period of
3 years. The authors found that although with the fiber optic
cable changed, the output of the laser reduced to 60% and the
samples collected from different parts of the carcass, a good
agreement could be obtained three years later by aligning the
peak positions and preprocessing Raman data together with a
selection of wavelengths/wavenumbers gave, which shows that
a quantitative use of Raman instruments are robust over time.

As to our knowledge, the only work on using RS technique
to predict FAs composition in muscle meat was reported by
Fowler et al. (2015), in which a handheld Raman device (300–
2100 cm¡1) with a 671 nm laser was used to quantify the FAs
composition in intact lamb M. longissimus lumborum. Their
results indicate that there is a good agreement between the
measured and Raman predicted total PUFAs (RC

2 D 0.93),
while not satisfactory for total MUFAs and SFAs (RC

2 < 0.60).
Compared to the modeling results obtained with the adipose
tissue, the predictive ability of RS for FAs composition in mus-
cle meat is inferior, which is probably due to that measuring
adipose tissue avoids the need to discriminate between meat
and fat spectra to remove contributions from overlapping pro-
tein vibrations on the fat signals which can arise when muscle
meat is measured.
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Prediction of FAs composition using NMR. The reports on
using NMR-based technique for quantification of FAs compo-
sition in meats are rare. As to our knowledge, only two studies
regarding CLAs prediction were published. Maria et al. (2010)
utilized 1H NMR technique to measure the relative quantities
of CLAs of in the extracted fat of beef and subcutaneous sam-
ples, and obtained a good correlation (RC D 0.97) between the
CLAs measured by GC and NMR. However, it needs to be
noted that only 12 samples were employed in this model, which
implied that the model established might not be robust enough.
More recently, another study was reported to quantify the abso-
lute CLAs content (mg/100 g meat) in 41 beef ribeye steaks by
using 1H NMR along with a new simple and fast lipid extrac-
tion protocol (Prema et al., 2015). The obtained RC of 0.96 sug-
gests very good agreement between data obtained by this rapid
extraction/NMR analysis method and the conventional chemi-
cal analysis method, which indicates the capacity of 1H NMR
for rapid determination of CLAs content in the extracted beef.
However, till now, no studies have been published for FAs pre-
diction in intact meats using NMR-based techniques.

Prediction of FAs composition using HSI. The studies on using
HSI technique to predict FAs composition in red meats are
scant. Only one study was found published, in which the poten-
tial of NIR HSI system (1000–2300 nm) was investigated for
prediction and visualization of the FAs composition in beef
(Kobayashi et al., 2010). In this work, the PLSR models were
established using the mean spectra extracted from the hyper-
spectral images, and satisfactory results for were obtained for
total SFAs and UFAs, with RP

2, SEP, and RPD of 0.87%, 1.69%,
and 2.43%, 0.89%, 3.41%, and 2.84%, respectively. For individ-
ual FA of myristic (C14:0), palmitic (C16:0), stearic (C18:0),
myristoleic (C14:1), palmitoleic (C16:1), oleic (C18:1), and
linoleic (C18:2), the RP

2 and RPD varied in the range of 0.68–
0.89 and 1.69–2.85, respectively. This study shows that HSI can
be a promising tool for FAs composition analysis of red meats,
and the results are encouraging for HSI to be applied to other
species of red meats.

Chicken meat

Consumption of chicken has increased in many countries not only
because it is a lean meat, perceived as being health-promoting due
to its lower calorific value per kg, but also that it is considered to
be a better source of PUFAs compared with meat from cattle and
sheep, including the key n-3 FAs (Jahan et al., 2004). However,
unlike the extensive work with red meats, only a small number of
studies have been conducted with chicken meat on fat content
and FAs composition analyses by using the four mentioned tech-
niques. Until now, only studies using NIRS and NMR techniques
have been reported for prediction of fat content in chicken meat
and NIRS for FAs composition.

Fat content

Prediction of fat content using NIRS. Based on the NIR reflec-
tance values at 1680, 1722, 1818, 2270, and 2336 nm, an early
study was conducted by Valdes et al. (1989), and they reported
a RC

2 and SEC of 0.95 and 2.0 g/kg for ground and freeze-dried

chicken carcass samples. Renden et al. (1986) exploited the
capability of reflectance NIRS (1445–2310 nm) in predicting
the fat content of homogenized whole-carcass of mature dwarf
hens, and good agreement was obtained between the NIRS pre-
dicted fat and actual chemical values, with RP

2 of 0.96. Using
the reflectance spectra between 400 and 2500 nm, Cozzolino
et al. (1996) obtained similar accuracy with RC

2 and SEC of
0.95 and 4.5 g/kg for model calibration with minced chicken
breast meat. Abeni and Bergoglio (2001) reported a higher
accuracy with RCV

2 and SECV of 0.97% and 0.24% for fat con-
tent determination in freeze-dried and minced chicken breast
muscle, which was probably due to the removal of water effect
by freeze-drying. By employing a big variation of chicken car-
cass samples from three different genotypes, which consisted of
fast-growing broiler, slow-growing broiler and a layer-type
chicken, McDevitt et al. (2005) also obtained an acceptable
result for fat prediction within dry and ground samples, with
RCV

2 and SECV of 0.93 and 17.23 g/kg. Cozzolino and Murray
(2002) compared the ability of reflectance NIRS technique in
predicting the fat content of minced and intact chicken meat,
and obtained the RCV

2 and RMSECV of 0.95 and 5.4 g/kg, and
0.45 and 9.0 g/kg for minced and intact chicken meat, respec-
tively. Their study result with chicken meat is in accordance
with red meats that reflectance NIRS technique gives better pre-
diction results for minced sample than intact one.

Moreover, other than using the NIRS in reflectance mode,
Windham et al. (2003) applied the transmittance NIRS technique
over the spectral range of 850–1050 nm to measure the fat con-
tent of boned raw poultry breast muscle, trimmings, and raw fin-
ished product (chicken nuggets). In this work, the authors used
two methods to develop the fat calibration model, namely direct
use of the database supplied by the instrument manufacturer
and collecting the samples from a local processing plant to estab-
lish the model themselves. With the two methods, they obtained
an error of 0.70% and 0.33% for fat content calibration, respec-
tively, and the corresponding SEP was 0.84% and 0.38%. The
self-developed model was more accurate for fat content predic-
tion in their work. The low errors obtained in this work supports
that transmittance NIRS technique is powerful in the poultry
processing industry for fat analysis in quality monitoring and
processed product formulation.

Prediction of fat content using NMR. Only two studies were
found reported on analysis of chicken fat by using NMR-based
method. Based on spin echo sequence, K€ov�er et al. (1998)
applied MRI technique to scan commercial broiler chickens at
the age of 6, 7, 8, 10, and 16 and 20 weeks for tracing their pec-
toral, abdominal, and total fat volume changes. Their study
demonstrated that changes found in the pectoral muscles as
well as in total and abdominal fat volume were in good agree-
ment with dissection data obtained at the slaughterhouse and
also laboratory data based on the measurement of total body
chemical composition in both sexes. Recently, Mitchell et al.
(2011) exploited quantitative magnetic resonance (QMR) for
measuring total body fat of live chickens. High correlation
(RC

2 D 0.94) was obtained between the data predicted by QMR
and chemical analysis, however, the accuracy was low, with
QMR method underestimating the percentage of total body fat
by 34%.
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FAs composition

Prediction of FAs composition using NIRS. Three studies were
found published on determination of FAs composition in
chicken meat recently. Berzaghi et al. (2005) tested the capabil-
ity of NIR reflectance spectra between 1100 and 2498 nm for
FAs composition determination in freeze-dried and ground
breast meat of laying hens fed four different diets, a control and
three diets enriched with different sources of n-3 PUFAs. Accu-
rate cross-validation results were achieved for total SFAs,
MUFAs, and PUFAs, and individual FAs of C16:0, C18:0,
C18:1, C18:2 n-6, C20:4 n-6, and n-6, with RCV

2 and SECV
varying in the ranges of 0.89%–0.97 and 0.052%–0.165%,
respectively. Similarly with freeze-dried and ground broiler
chicken breast meat, Zhou et al. (2012) applied Vis/NIR reflec-
tance spectroscopy (400–2498 nm) to determine its FAs com-
position, based on both absolute and relative (%) FA contents.
Their results showed that calibrations based on the absolute FA
content resulted in better performance than those based on the
relative content. Satisfactory performance was obtained for
most individual FAs and FA groups (based on the absolute con-
tent) except C18:3 n-6, C20:0, C20:2 n-6, and C24:1 n-9, with
RP

2 values between 0.83 and 0.97. Furthermore, to determine
the effectiveness of the reflectance NIRS with assistance of fiber
optic probe for on-line determination of FAs composition of
chicken meat at the slaughterhouse, De Marchi et al. (2012)
conducted a study on intact breast muscles over the spectral
range of 350–1830 nm; however, no satisfactory prediction
models were obtained in their work, with RCV

2 less than 0.60
for all studied FAs.

Fish and fish oil
Fish has always been considered to be one of the most signifi-
cant sources of nutrients for mankind. Over the past several
decades, many studies have demonstrated the association
between fish consumption and the decreased risk of diseases,
such as cardiovascular disease (Stone 1996), ischemic heart dis-
ease, and stroke (Zhang et al., 1999). Fish are rich sources of
long-chain n-3 PUFAs, such as EPA and DHA, which are
acknowledged as the key nutrients attributed to the potential
protective effects of fish consumption. Moreover, to be able to
tailor fish quality for different markets in the future, there is
also a great need for rapid and non-destructive analysis meth-
ods, supporting the instant documentation of the fat content
and FAs composition in fish.

Current dietary guidelines recommend a daily intake of 0.5–
1.0 g of EPA and DHA for primary and secondary prevention
of coronary heart disease, and higher pharmacological doses
are recommended for treatment of hypertriglyceridemia (Duda
et al., 2009). However, low dietary intakes of long-chain n-3
PUFAs in some countries have resulted in the need for both
dietary supplements and foods fortified with these FAs (Mur-
phy et al., 2007; Sanguansri and Augustin, 2007). Fish oil con-
tains a large amount of long-chain n-3 PUFAs, and thus has
become one of the popular dietary supplements for consumers.
The market of fish oil has rapidly expanded in recent years, and
currently there are many brands of fish oil supplements avail-
able for consumers, most of which claim the active ingredients
EPA and DHA on their labels. Rapidly increasing public

demand for these products requires strict process control and
high standards in quality assurance, which in turn requires sim-
ple, rapid, and accurate analytical techniques for monitoring
these FAs both during and after production. This section
reviews the recent research progress in analyzing fat content
and FAs composition of fish and fish oil by using NIRS, RS,
NMR, and HSI techniques.

Fat content

Prediction of fat content using NIRS. Based on NIRS tech-
nique, a wide range of studies have been reported on prediction
of fat content in different species of fishes, with most studies
carried out on trout and salmon fishes in reflectance mode. The
detection of fat in fish by NIRS started with ground and freeze-
dried samples first. An early study was reported by Gjerde and
Martens (1987) on prediction of fat content in ground and
freeze-dried rainbow trout (Salmo gairdneri) by using a 19-fil-
ter NIR instrument which covered the spectral range of 1445–
2384 nm, and a SEC of 4.5 g/kg was obtained. Similar to the
ground and freeze-dried of rainbow trout, Valdes et al. (1989)
obtained RC

2 and SEC of 0.78 and 1.4 g/kg for fat prediction by
using the NIR reflectance values at 1722, 1734, 1778, 18l8, and
1940 nm. Recently, Folkestad et al. (2008) reported a work on
predicting fat content of farmed Atlantic salmon in both fillet
and gutted states by using Vis/NIR reflectance spectroscopy
(449–744 and 760–1040 nm). The RCV and SECV of 0.83% and
1.58% were obtained for fish fillet samples, and the data range
of 0.86%–0.90% and 0.68%–1.25% for gutted fish, respectively.

As mentioned above, NIRS in conjunction with the fiber
optic probe has great potential for on-line determination of the
chemical composition of foods. To exploit its feasibility in
online predicting the fat content of Atlantic salmon, Isaksson
et al. (1995) conducted a study with both ground and intact-
farmed Atlantic salmon fillets. The RMSECV of 6.6 and 10.8 g/
kg was obtained for ground and intact salmon fillets, respec-
tively, which illustrated the high efficiency of NIRS with fiber
optic probe. Further, based on the same NIR instrument with
Isaksson et al. (1995), while with different type of fiber optic
probe, Wold and Isaksson (1997) continued to exploit its
capacity for predicting the average fat content of the whole
Atlantic salmon, and RCV and RMSECV of 0.87% and 1.12%
was achieved, respectively. Recently, another study was
reported on prediction of fat content in farmed Atlantic salmon
using a portable Vis/NIRS (350–2500 nm) equipped with a
contact probe (spot size: 10 mm) (Brown et al., 2014). In this
work, three sampling presentations of minced Norwegian qual-
ity cuts (NQCs), intact NQCs and gutted fish with skin were
included, and the prediction results with RP

2 and SEP of 0.94%
and 0.5%, 0.82% and 1.0%, and 0.77% and 1.2% were achieved,
respectively, for small fish (weight: average § SD of 1.4 §
0.4 kg), and 0.86% and 0.7%, 0.59% and 1.2%, and 0.49% and
1.5%, respectively, for large fish (weight: average § SD of 4.2 §
0.9 kg).

In addition to using the reflectance mode, several studies
were also reported on applying NIR transmittance spectra to
predict fat content in fish. Based on the NIR transmittance
spectra between 850 and 1050 nm, Sollid and Solberg (1992)
measured the homogenized Atlantic salmon paste of 23-mm
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thickness, and achieved a SECV of 0.49%. Wold et al. (1996)
exploited the ability of NIR transmittance spectroscopy in pre-
dicting the average fat content of farmed Atlantic salmon fillets
with skin and scales. The authors collected the NIR transmit-
tance spectra from the upper part of the fish, just behind the
dorsal fin to represent the average fat content of whole salmon,
and based on the transmittance values at 930, 870, 890, 910,
1010, 970, 990, 1050, and 950 nm, satisfactory prediction
results were obtained, which demonstrate the usefulness of NIR
transmittance spectra in prediction of fat content in fish.

Recently, some researchers also investigated the capacity of
NIRS in predicting fat content of live fish. Solberg et al. (2003)
conducted an exploratory research on the live, anaesthetized
farmed Atlantic salmon first, using two different NIR instru-
ments, namely, a grating monochromator instrument equipped
with a fiber optic interactance probe (800–1098 nm), and a
diode array instrument measuring diffuse reflectance (900–
1700 nm). Their study showed that both methods resulted of
the same accuracy, with RCV and RMSECV of 0.90 and 14 g/kg.
Folkestad et al. (2008) reported a better validation result for
prediction of fat content in anaesthetized live-farmed Atlantic
salmon, with RCV and RMSECV of 0.94% and 1.0%, respec-
tively. Both studies suggest the great potential of NIRS in esti-
mating fat content of live fish, which would make it possible to
monitor the feeding regime and determine the fat content of
fish before slaughter for future product tailoring of different
markets.

Except for trout and salmon, NIRS was also applied to quan-
tify fat content in other fish species, such as halibut (Nortvedt
et al., 1998), skipjack (Shimamoto et al., 2003), mackerel (Shi-
mamoto et al., 2004) and tuna (Khodabux et al., 2007), and so
on. The NIR transmittance spectra between 850 and 1048 nm
were used to determine fat content in homogenized Atlantic
halibut, and satisfactory cross validation result was obtained,
with RMSECV of 2.7 g/kg (Nortvedt et al., 1998). Shimamoto
et al. (2003) employed both portable and desktop NIR spectro-
photometers (700–962 nm) to determine fat content in frozen
skipjack, and concluded that the fat content at the abdominal
part could be determined more accurately than at the central
part of skipjack body. At the abdominal part, the SEP of 1.06%
and 1.58% was achieved using the portable and desktop NIR
spectrophotometers, respectively. In another work reported by
Shimamoto et al. (2004), good agreements were also observed
for fat content values measured by NIRS and wet chemical
methods, with high RC of 0.95 and 0.97 for frozen and thawed
mackerel, respectively. Khodabux et al. (2007) proved the capa-
bility of NIRS (350–2500 nm) with the fiber optic probe for
prediction of the total fat and free fat contents in tuna. The RC

of 0.95 and 0.96 was obtained in establishing the prediction
models for total fat and free fat, respectively.

Prediction of fat content using RS. Unlike the extensive studies
by NIRS technique, only few studies were reported on using RS
to predict fat content in fish. First, in order to elucidate the
potential of Raman spectra in measuring fat content of fish,
Marquardt and Wold (2004) conducted an exploratory study
in several species of intact fish fillets using RS (785 nm excita-
tion) in tandem with a 25 £ objective to collect the scattered
radiation. Their results show that fish muscle exhibits little

fluorescence at 785 nm excitation, thus exhibiting strong
Raman scattering signals for fat analysis at approximately 1657,
1440, 1301 (CH2 in phase twist), 1267( D C-H symmetric rock
(cis)), 1076 (CCC stretch) and 1064 cm¡1 (CCC stretch) (Sade-
ghi-Jorabchi et al., 1991; Howell et al., 2001). Further, Wold
et al. (2004) investigated the feasibility of RS technique in quan-
tifying the fat content of ground Atlantic salmon muscle by the
aid of a spherical lens probe for efficient sampling. Good quan-
titative results were obtained in their work, with RCV and SECV
of 0.95 and 15.5 g/kg after spectral preprocessing and variable
selection, which implies the high potential of RS technique in
rapid prediction of fat content of fish.

Prediction of fat content using NMR. The ability of NMR tech-
nique to determine fat content of fish has already been investi-
gated and significant correlations with chemical data were
found. By using the low-field 1H NMR operating at 23.2 MHz,
an early study was reported by Jepsen et al. (1999) to predict fat
content in intact salmon (Salmo salar). With the calibration
model established by PLSR method, the independent test
achieved an optimal SEP of 12 g/kg in fresh salmon flesh. Based
on a self-calibrated NMR relaxometry method, Toussaint et al.
(2002) conducted a study to determine the fat content of dried
and homogenized brown trout (Salmo trutta) flesh. Their
results showed that NMR technique gave an intermediate fat
content value, 4.69% lower in relative value than those obtained
by the Folch method and 6.75% higher than those by Soxhlet
chemical extraction. Further, Veliyulin et al. (2005) employed a
mobile LF-NMR spectrometer operating at 20 MHz (the minis-
pec Bruker Professional Mouse) to quantify fat content and also
visualize its distribution of the NQC of anaesthetized Atlantic
salmon. Aside from achieving a good correlation (RC D 0.92)
between the reference fat values and those predicted by NMR,
their work also gave a “fat image” for visualization of fat distri-
bution, with a spatial resolution of about 5 mm, which allowed
direct read-out of the fat value in any image pixel as well as the
average fat content in a user-defined region of interest (ROI).

With the development of MRI technique, studies concerning
prediction of fat content in fish have started to be reported. Brix
et al. (2009) used a chemical shift based water-fat separation
MRI technique for quantification and localization of fat in
Atlantic mackerel, with the samples collected at three different
nutritional stages. The authors succeeded in globally visualizing
the fat, however, they did not find stable agreement between
the fat content quantified by MRI and GC and could not clearly
explain why. Afterwards, another study was conducted using
the spin echo (SE) T1-weighted images, which is considered to
attain high contrast between fat and muscle to measure the fat
content in muscle and subcutaneous area of rainbow trout
(Oncorhynchus mykiss) (Collewet et al., 2013). High correla-
tions were obtained between the fat measured by MRI and GC
techniques, with RC

2 of 0.77 and 0.87 for the ventral and dorsal
part, respectively.

Prediction of fat content using HSI. A range of studies has
proved HSI to be a valid tool for fat analysis in fish. An early
work was accomplished by ElMasry and Wold (2008), in which
six species of fish fillets including Atlantic halibut, catfish, cod,
mackerel, herring, and saithe were analyzed on-line by HSI to
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obtain quantitative measurements of fat distribution. PLSR was
undertaken to analyze the spectral data extracted from the cor-
responding hyperspectral images, followed by converting the
pixel spectra to a distribution map of fat content. Their results
showed that PLSR modeling method based on the spectral
information between 760 and 1040 nm could yield a good pre-
diction result for fat, with RC and RMSECV of 0.91% and
2.99%, respectively. However, it needs to be noted that the ref-
erence fat values were measured by NMR technique in this
work, which is not as classical and accurate as the traditional
wet chemical method. Segtnan et al. (2009) carried out a work
with an online NIR interactance imaging (760–1040 nm) to
analyze the fat distribution in raw and salted salmon (Salmo
salar) fillets. In this work, the instrument was calibrated using
five cylindrical plugs (15 mm diameter) from each fillet. Their
study showed good prediction results, with RC and RMSECV of
0.95% and 1.96%, and 0.97% and 1.95% for raw fillets and
salted fillets, respectively, which demonstrates that HSI is well
suited for online assessment of chemical composition in fish.
More recently, Zhu et al. (2014) applied another NIR HSI sys-
tem with a wider spectral range of 899–1694 nm to determine
the spatial distribution of fat in different positions of Atlantic
salmon fillets. By extracting the mean spectrum from the ROI
inside each hyperspectral image, and the quantitative relation-
ship was developed, which gave the RP and RMSEP of 0.93 and
1.24%, respectively. By applying the obtained quantitative
model pixel-wise to the hyperspectral images, the chemical
images of fat were produced in their work, which revealed that
the fat content can vary greatly among different parts of salmon
fish. Therefore, HSI technique makes it possible for fish manu-
facturers who wish to cut away fillets with certain threshold
concentrations to perform it easily with limited modification in
their production lines.

FAs composition

Prediction of FAs composition using NIRS. Free FAs (FFAs)
are the hydrolytic products from fish lipid, and it has been rec-
ognized as a freshness index for a long time (Ke and Ackman,
1976). Using NIR transmittance spectra between 1100 and
2500 nm, an early study was conducted by Zhang and Lee
(1997) to predict FFA content from the extracted fat of mack-
erel fish. They first established the calibration model using the
artificially prepared samples, which were produced by adding
different amounts of FFAs into commercial menhaden oil, and
then the model was used to predict FFA content in mackerel
fish stored at 4 and 24�C with different storage time. Both
PLSR and MLR methods were applied to establish the predic-
tion models, and by comparing the prediction results in com-
mercial fish oil, PLSR model was selected to predict the FFA
content in mackerel as producing less relative errors. For FFA
in mackerel fat, the relative errors obtained were all less than
10%, which indicates the high potential of NIR transmittance
spectra for prediction of FFA content in fish oil and therefore
for the assessment of fish quality. Recently, another work was
reported by Karlsdottir et al. (2014) on prediction of the FAs
composition of two lean fish species, saithe, and hoki by direct
application of the NIR reflectance fiber probe to the thawed
and homogenized fish muscle samples. Based on the spectral

information over the spectral range of 800–2500 nm and PLSR
modeling method, the RP

2, RMSEP and RPD of 0.98, 2.00 and
7.21, 0.96, 1.90, and 4.81, 0.93, 2.90, and 4.13 were obtained,
respectively for prediction of total MUFAs, PUFAs, and FFAs
in hoki samples, and 0.80, 1.35, and 2.84; 0.73, 0.81, and 1.98;
and 0.83, 3.43, and 2.58, respectively, for saithe samples.

Regarding fish oil, it is only in the last decade that NIRS
started to be applied extensively to measure its FAs. Using NIR
spectra over the range of 2000–12,000 cm¡1, a study was con-
ducted by Endo et al. (2005) to determine IV of eight species of
fish oils, which consisted of salmon, sardine, tuna, cod, squid,
orange roughy, myctophid, and stromateidei. By performing
PLSR modeling method between the NIR absorbance spectra
and the IV value measured by the titration method, they
achieved the bias and the bias-corrected SEP of 0.00% and
1.3% for the whole set of the tested samples, which showed the
excellence of NIRS for IV prediction in fish oils, with great
accuracy and reproducibility. Another publication was found
to evaluate the FFA content in fish oils using NIR transfelctance
spectra (1100–2500 nm) (Cozzolino et al., 2005). Based on
PLSR modeling method, satisfactory prediction result with RP

and SEP of 0.98 and 0.50 g/kg was achieved in their work. Later,
Azizian et al. (2010) reported good agreement between the FT-
NIR and GC measured values of individual FA content in fish
oils. The determination coefficients were found to be high (RC

2

� 0.97) for all the tested individual FA of C14:0, C16:0, C16:1
cis9, C18:0, C18:1 cis9, C18:2 cis9,cis12, C20:1 cis11, C18:3 n-3,
C18:4 n-3, C20:4 n-3, C20:5 n-3, C22:5 n-3, and C22:6 n-3 in
this work.

Studies have also been published on determination of the
long chain n-3 FAs, such as EPA, DHA, and DPA in fish oils
using NIRS. Bekhit et al. (2014) investigated the potential of
NIRS (1100–2500 nm) in transflectance mode for prediction of
the concentrations of EPA, DHA, and total n-3 FAs in fish oil
supplements. The prediction models were established by PLSR
method using the pre-processed spectra of the whole and
selected regions, and the best prediction result was achieved
with RP

2 and SEP of 0.935% and 3.11%, 0.952% and 2.60%, and
0.996% and 1.60% for EPA, DHA, and total n-3 FAs, respec-
tively. Another study was reported by Wu et al. (2014) using
the Vis-short-wave NIR (Vis-SNIR) and long-wave NIR
(LNIR) transmittance spectra to predict the content of EPA,
DHA, and docosapentaenoic acid (DPA) in fish oils. Using the
whole spectral information and the selected spectral variables
by successive projections algorithm (SPA) and uninformative
variable elimination (UVE), the quantitative models were
established between the spectral data and reference PUFA con-
tents based on PLSR algorithm. The best cross-validation
results using the Vis-SNIR spectra were achieved with
RCV

2 and RMSECV of 0.942 and 16.07 mg/g, 0.903 and
10.93 mg/g, 0.905 and 1.84 mg/g for EPA, DHA, and DPA,
respectively, and 0.944 and 15.77 mg/g, 0.908 and 10.61 mg/g,
0.979 and 0.85 mg/g, respectively, using the LNIR spectra.

Prediction of FAs composition using RS. Based on RS tech-
nique, a few studies have been carried out to characterize the
FAs composition and IV of fish until recently, and its high
potential has been proved. First, Afseth et al. (2005) evaluated
the possibility of RS (785-nm laser) for FAs composition
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determination in a complex food model system, which con-
sisted of 70 different mixtures of protein, water, and oil blends
in in order to create a rough chemical imitation of typical fish
and meat samples. By performing PLSR method, they
obtained the RP and RMSEP of 0.99 and 6.8 g I2/100 g fat,
0.99% and 2.9%, 0.95% and 3.9%, and 0.98% and 3.6% for pre-
diction of IV and total SFAs, MUFAs, and PUFAs, respec-
tively, which suggested the high potential of RS technique in
prediction of FAs composition in real foods. Subsequently, by
using RS equipped with the fiber optics to a Kaiser multireac-
tion filtered probehead, Afseth et al. (2006) characterized the
FAs composition and unsaturation of salmon in five sampling
presentations, which consisted of oil extracts, ground samples
and three types of intact samples collected from different
positions according to NQC named as “Darkfat,” “Skinfat”
and “Infat” in their work. Based on PLSR modeling method,
their results showed that Raman spectra collected from the oil
extracts provided the most accurate IV prediction, with RC

and RMSECV of 0.87 and 2.5 g I2/100 g fat, respectively. The
RC and RMSECV (g I2/100 g fat) of ground salmon and intact
cuts of “Darkfat,” “Skinfat” and “Infat” achieved with 0.86
and 2.7, 0.73 and 3.5, and 0.80 and 3.1, 0.83, and 2.9, respec-
tively. Higher prediction errors were obtained from Raman
spectra of intact salmon muscle, which is considered to be
partly owing to the sampling uncertainties in the relation
between Raman measurements and reference analysis. More
recently, Afseth et al. (2014) reported another study for quali-
tative and quantitative characterization of quality parameters
of salmon through the skin by using s laboratory-based spa-
tially offset RS (SORS) setup comprising an 830-nm laser. In
this work, intact salmon samples with both dark and light
skin were measured at different spatial offsets, and results
showed that information regarding FAs composition could be
obtained from both dark and light skin when using spatial off-
sets in the range of 5–6 mm, while conventional backscatter-
ing RS could not gain such information. By regressing the
score values of the second principal component (PC) of
Raman spectra to the GC measured IV values, they obtained
high RC

2 of 0.98 and 0.90 from the light and dark skin, respec-
tively, which clearly reveal the quantitative potential of SORS
spectra for through-skin analysis. However, only a small
number of samples were covered in this study, and a large set
of samples are still needed.

Regarding fish oil, Bekhit et al. (2014) reported the only
work by applying RS technique to estimate the concentra-
tions of EPA, DHA, and total n-3 FAs in fish oil supple-
ments. In this work, the RS was equipped with an excitation
wavelength of 785 nm and a fiber optic probe attached to a
20-cm-long immersion optic with a sapphire window at its
tip for direct contact with sample surface. Using the whole
and selected regions of polynomial curve-fitted and standard
normal variate (SNV)-transformed Raman spectra, the best
prediction result was achieved with RP

2 and SEP of 0.961%
and 2.73%, 0.947% and 2.56%, and 0.981% and 3.27%,
respectively, for EPA, DHA and total n-3 FAs by performing
PLSR modeling method.

Prediction of FAs composition using NMR. Based on NMR
technique, many studies have been carried out to study its

capability in predicting the FAs composition of fish and fish
oil. Aursand and Grasdalen (1992) exploited the high-resolu-
tion 13C NMR for FA analysis of lipid that extracted from the
white muscle of Atlantic salmon (Salmo salar), and proved that
the 13C NMR spectra could provide information for analyzing
FAs in fish. The authors found that in 13C NMR spectrum,
DHA has unique and well-resolved carbon resonances in the
olefinic region originating from the C4 and C5 carbon, and also
the n-3, n-6, n-7, and n-9/n-11 groups of FAs give rise to well-
resolved signals in the spectrum which are unique for the
respective groups. Aursand et al. (1993) applied the high-reso-
lution 13C NMR to define the n-3 FAs distribution in lipid
extract and white muscle of Atlantic salmon (Salmo salar).
Their results revealed that the 13C spectrum of lipid extracted
from fish muscle gaves quantitative information about the indi-
vidual n-3 FAs, C18:2 n-6, C20:1/C22:1, and groups of FAs. In
the 13C NMR spectrum of white muscle, the methyl region of
the acyl chains of triacylglycerols gave rise to sufficiently
resolved signals to permit estimation of n-3 FAs content. Sacchi
et al. (1993) also reported a good agreement between 1H-NMR
and GC determined n-3 PUFAs from fish lipids. Aursand et al.
(1995) examined the positional distribution of n-3 FAs (C18:4
n-3, C20:4 n-3, C20:5 n-3, C22:5 n-3, and C22:6 n-3) in depot
fat of Atlantic salmon (Salmo salar), harp seal oil, and cod liver
oil triacylglycerols by 13C NMR, and confirmed that 13C NMR-
derived data were in accordance with the corresponding data
measured by conventional techniques.

Since the beginning of this century, the studies on using
NMR technique to analyze the FAs composition of fish oil are
increasing. Using a high-resolution proton 1H NMR instru-
ment performing at 300–500 MHz, two relevant studies were
reported by Igarashi et al. (2000, 2002) to determine the con-
centration (mg/g) of DHA, the molar proportion (mol%) of
DHA and the molar proportion of total n-3 FAs in fish oils.
Four species of fish oils of bonito, tuna, and salmon and sardine
oils were covered in their work, and the internal standard of
ethylene glycol dimethyl ether (EGDM) was used mainly to
allow quantification of DHA on a weight basis (mg/g). The
RSDr and RSDR range of 0.91–2.62% and 1.73–4.27% was
obtained, respectively for DHA concentration (mg/g), 0.59–
3.46% and 0.23–0.90% for the molar proportion (mol%) of
DHA, and 0.23–0.90% and 0.85–2.01% for total n-3 FAs. More
recently, Wu et al. (2014) reported a work in which four poten-
tial spectroscopic techniques consisting of Vis-SNIR, LNIR,
mid-infrared and NMR spectroscopy were compared with their
performance in predicting EPA, DHA and DPA contents of
fish oils. Their results showed that for the three studied PUFAs,
the best predictions were all achieved by NMR technique, with
the achieved RCV

2 and RMSECV of 0.970 and 11.48 mg/g,
0.982 and 4.73 mg/g, and 0.983 and 0.77 mg/g, respectively for
EPA, DHA, and DPA.

Regarding fish oil, apart from quantitative analysis of its FA
contents, studies were also conducted for classification and
authentication purposes. Based on the extracted fish oils from
salmon muscle, Masoum et al. (2007) exploited the potential of
1H NMR technique in combination with support vector
machine (SVM) to classify wild and farmed salmon and their
origins. The authors concluded that 1H NMR spectra could
provide useful information for analyzing FAs composition of
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fish oils, and based on that, the wild and farmed salmon could
be correctly distinguished, and ca. 5% misclassification rate of
the country of origins was reported. For authentication pur-
poses, Standal et al. (2009) carried out a study by applying 13C
NMR technique to distinguish different species of fish oils,
which consisted of salmon, mackerel, and herring. Their results
showed that significant differences exist in the sn-2 position
specificity of C22:6 n-3, C20:5 n-3, and C18:4 n-3 among the
species investigated. Also, the 13C-NMR spectra in the carbonyl
region exhibit clear distinction in their PCA clustering analysis,
which makes it possible to distinguish these three fish oils solely
from their 13C-NMR spectra of carbonyl region. Also, some
publications demonstrate that 13C-NMR method is a promising
technique for obtaining information about the positional distri-
bution of FAs, especially EPA and DHA in fish oils (Aursand
et al., 1995; Sacchi et al., 1994; Su�arez et al., 2010; Tengku-
Rozaina and Birch, 2014).

Conclusions and future trends

This review summarized the recent research progress of four
nondestructive detection techniques, namely NIRS, RS, NMR,
and HSI techniques in rapid determination of fat content and
FAs composition of muscle foods, which consist of pork, beef,
lamb, chicken meat, fish and fish oil. Overall, it can be seen that
all the four techniques have been studied extensively for fat
content and FAs composition analyses in muscle foods. Results
published in different studies are variable and can be related to
different influencing factors such as the instrument capabilities
and settings, sample presentation, number of sample employed,
statistical methods adopted and local conditions (industry or
laboratory) among others.

In detail, NIRS technique was studied in the most extensive
range among different varieties of muscle foods. NIRS has been
applied to on-line prediction of fat content of ground meat
under industrial condition, and satisfactory predictive perfor-
mance was achieved. However, NIRS seems to have limited
predictive capability for determining the fat content and FAs
composition of intact meat, as the modeling results obtained
were relatively low. The inferior performance of NIRS tech-
nique with intact meat is mainly due to that NIRS is based on
point-detection, and such nature makes it difficult to cover the
heterogeneous information of intact meat. The studies using
RS, NMR, and HSI were relatively new and not extensive as
NIRS; however, their great potential for analyzing fat content
and FAs composition in different varieties of muscle foods has
been proved. In particular, HSI fuses the merits of traditional
imaging and spectroscopy techniques, and thus enables the
mapping of fat/FAs within the tested sample, which is espe-
cially useful for non-homogeneous samples. As can be seen
from the reported studies, HSI can achieve much better model-
ing results than NIRS for fat/FAs prediction in intact meat,
which is mainly attributed to the mapping ability of HSI. How-
ever, there are still some challenges ahead for RS, NMR, and
HSI techniques. Due to high dimensionality and time con-
straints for image acquisition and subsequent image analyses,
seeking the most sensitive wavebands so that multispectral
imaging systems can be built will be the trend in research and
development of HSI technique.

Both RS and NMR remain expensive techniques now, and it
is still far from introducing industrial Raman and NMR sensors
on production lines in food factories. With the substantial
development of hardware and software of the instrumental sys-
tems, the low-cost portable optical devices and fiber optic tech-
nique have appeared and are opening a new practical way for
online analysis of food composition. In addition, as shown in
the reported studies that the predictive accuracy for some FAs,
especially minor amounts of FAs is not good yet and further
improvement is still needed. Apart from the improvement and
development of the hardware system, the information fusion of
different techniques can also be a promising way for higher
predictive accuracy.
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