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Food and feed is possibly the area where processing anchored in biological agents has the deepest roots. Despite this, process
improvement or design and implementation of novel approaches has been consistently performed, and more so in recent years,
where significant advances in enzyme engineering and biocatalyst design have fastened the pace of such developments. This paper
aims to provide an updated and succinct overview on the applications of enzymes in the food sector, and of progresses made,
namely, within the scope of tapping for more efficient biocatalysts, through screening, structural modification, and immobilization
of enzymes. Targeted improvements aim at enzymes with enhanced thermal and operational stability, improved specific activity,
modification of pH-activity profiles, and increased product specificity, among others. This has been mostly achieved through
protein engineering and enzyme immobilization, along with improvements in screening. The latter has been considerably
improved due to the implementation of high-throughput techniques, and due to developments in protein expression and
microbial cell culture. Expanding screening to relatively unexplored environments (marine, temperature extreme environments)
has also contributed to the identification and development of more efficient biocatalysts. Technological aspects are considered, but
economic aspects are also briefly addressed.

1. Introduction

Food processing through the use of biological agents is
historically a well-established approach. The earliest appli-
cations go back to 6,000 BC or earlier, with the brewing of
beer, bread baking, and cheese and wine making, whereas
the first purposeful microbial oxidation dates from 2,000
BC, with vinegar production [1–3]. Coming to modern days,
in the late XIX, century Christian Hansen reported the use
of rennet (a mixture of chymosin and pepsin) for cheese
making, and production of bacterial amylases was started
at Takamine (latter to become part of Genencor). Pectinases
were used for juice clarification in the 1930s, and for a short
period during World War II, invertase was also used for the
production of invert sugar syrup in a process that pioneered
the use of immobilized enzymes in the sugar industry [1].
Still, the large-scale application of enzymes only became
really established in the 1960s, when the traditional acid
hydrolysis of starch was replaced by an approach based in

the use of amylases and amyloglucosidases (glucoamylases), a
cocktail that some years latter would include glucose (xylose)
isomerase [1, 2, 4, 5]. From then on, the trend for the
design and implementation of processes and production of
goods anchored in the use of enzymes has steadily increased.
Enzymes are currently among the well established products
in biotechnology [6], from US $1.3 billion in 2002 to US $4
billion in 2007; it is expected to have reached US $5.1 billion
in a rough 2009 year, and is anticipated to reach $7 billion
by 2013 [3, 5, 7–9]. In the overall, this pattern corresponds
to a rise in global demand slightly exceeding 6% yearly
[7, 9]. Part of this market is ascribed to enzymes used in
large-scale applications, among them are those used in food
and feed applications [10]. These include enzymes used in
baking, beverages and brewing, dairy, dietary supplements,
as well as fats and oils, and they have typically been
dominating one, only bested by the segment assigned to
technical enzymes [11, 12]. The latter includes enzymes in
the detergent, personal care, leather, textile and pulp, and
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paper industries [10, 13]. A recent survey on world sales
of enzymes ascribes 31% for food enzymes, 6% for feed
enzymes and the remaining for technical enzymes [11]. A
relatively large number of companies are involved in enzyme
manufacture, but major players are located in Europe, USA
and Japan. Denmark is dominating, with Novozymes (45%)
and Danisco (17%), moreover after the latter taking over
Genencor (USA), with DSM (The Netherlands) and BASF
(Germany) lagging behind, with 5% and 4% [10, 11, 14].
The pace of development in emerging markets is suggestive
that companies from India and China can join this restricted
party in a very near future [15–17].

2. Relevant Enzymes: Tapping for
Improved Biocatalysts

2.1. General Aspects and the Screening Approach. Roughly
all classes of enzymes have an application within the food
and feed area, but hydrolases are possibly the prevalent one.
Representative examples of the enzymes and their role in
food and feed processing are given in Table 1. The widespread
use of enzymes for food and feed processing is easily under-
standable, given their unsurpassed specificity, ability to oper-
ate under mild conditions of pH, temperature and pressure
while displaying high activity and turnover numbers, and
high biodegradability. Enzymes are furthermore generally
considered a natural product [18, 19]. The whole contributes
for developing sustainable and environmentally friendly
processes, since there is a low amount of by-products,
hence reducing the need for complex downstream process
operations, and the energy requirements are relatively low.
Life-cycle assessment (LCA) has confirmed, that within the
range of given practical case studies, including food and feed
processing, the implementation of enzyme-based technology
has a positive impact on the environment [3]. LCA is a
methodology used to compare the environmental impact
of alternative production technologies while providing the
same user benefits [20].

Some of the broad generalizations on the limitations of
enzymes for application as biocatalysts in commercial scale,
namely, their high cost, low productivity and stability, and
narrow range of substrates, have been rebutted [21, 22].
Aiming at improving the performance of biocatalysts for
food and feed applications, particular care has been given to
increasing thermal stability, enhancing the range of pH with
catalytic activity and decreasing metal ions requirements, as
well as to overcoming the susceptibility to typical inhibitory
molecules. Some examples of strategies taken to improve the
performance of relevant enzymes for food and feed are given
in Table 2. Along with these different strategies focused on
the enzyme molecule (namely, protein engineering, enzyme
immobilization), the developments in recombinant DNA
technology that occurred in the 1980s also had a huge
impact on the application of enzymes in food and feed. By
allowing gene cloning in microorganisms compatible with
industrial requirements, this methodology enabled cost-
feasible production of enzymes that were naturally pro-
duced in conditions that prevented large-scale application

(namely, enzymes from plant or animal cells, such as trans-
glutaminase or even slow-growing microorganisms). When
successfully implemented, the undertaken approaches allow:
(a) continuous operations at relatively high temperatures;
(b) eased implementation of enzyme cascade, given the
reduced need for processing the reaction media (pH adjust-
ments; metal ion removal/addition) throughout the interme-
diate steps of a multistep biotransformation (namely, starch
to high fructose syrup); and (c) the use of raw substrates,
preferably as high-concentrated solutions, hence cutting
back in costs related to upstream processing and increasing
productivity [4, 23, 24]. Methodologies with a high level of
parallelization, anchored in computer-monitored microtiter
plates equipped with optic fibers and temperature control
have also been developed. These provide high-throughput
capability for a speedy and detailed characterization of the
performance of enzymes [25]. Particular focus was given to
the prediction of the long-term stability of enzymes under
moderate conditions using short-term runs (up to 3 hours).

One of the methodologies to obtain improved bio-
catalyst relies on in-vitro modifications, which will be
addressed latter in this paper; another approach relies on
screening efforts, which has been consistently undertaken,
as summarized recently [26–31]. Some focus is given to
extremophiles, particularly thermophiles, since operation
at high temperatures (roughly above 45–50◦C) minimizes
the risk of microbial contamination, a particularly deli-
cate matter under continuous operation. Furthermore, the
extension of some reactions in relevant food applications
is favored at relatively high temperatures (namely, iso-
merization of glucose to fructose), although care should
be taken to avoid an operational environment that may
lead by-product formation (namely, Maillard reactions).
Examples of screened enzymes include the isolation of
amylases, with some of them being calcium independent
[32–38]; amylopullulanases [39]; fructosyltransferases [40];
glucoamylases [41]; glucose (xylose) isomerases [42, 43];
glucosidases [44, 45]; inulinases [46–49]; levansucrases [50];
pullulanases [51, 52]; and xylanases [53, 54]. Other examples
of these enzymes, with some of which able to retain stability
under temperatures of 90◦C or higher, were reviewed by
Gomes and Steiner [55]. The majority of enzymes used in
food and feed processing is of terrestrial microbial origin,
and screening-efforts for isolation of promising enzyme-
producing strains have accordingly been performed in such
background [3, 5, 56]. From some years now, marine
environment has also been tapped as a source for useful
enzymes from either microbial or higher organisms origin
[57–60]. This latter environment has allowed the isolation
of some promising biocatalysts, such as the heat-stable
invertase/inulinase from Thermotoga neapolitana DSM 4359
or inulinase from Cryptococcus aureus [61–63], amylolytic
enzymes, glucosidases and proteases from severalgenera [32,
44, 45, 64, 65], esterase from Vibrio fischeri [66], and glycosyl
hydrolases [67, 68]. Other examples of useful enzymes for
food and feed, but isolated from higher organisms [59, 69],
are given in Table 3. Some of these enzymes are actually
psychrophiles, hence performing best at low temperatures
[30].
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Operation at low temperatures is also welcome since it
also reduces the risk of microbial contamination, enables
some processes to be carried out with minimal deterioration
of the raw material. These include protein processing, such
as cheese maturing and milk coagulation with proteases [59,
80]; milk processing with lactase for lactose-free milk [81–
83]; clarification of fruit juices with pectinases to produce
clear juice [84]; or production of oligosaccharides [85].

Since extremophiles are often difficult to grow under
typical laboratory conditions if not nonculturable at all,
different approaches have been developed in order to assess
the potential of enzymes from such microorganisms. One
approach relies on the generation and screening of target
genes from DNA libraries, which can be obtained from
mixed microbial population from environmental samples.
Recombinant microorganisms can then be obtained using
mesophiles as hosts where the genes of interest from
extremophiles have been expressed [86]. In order to screen
the huge number of DNA-libraries typically generated for
the intended property, high-throughput methods have been
implemented [87]. These methods are also widely used when
protein engineering is carried out. This will be addressed in
the following section.

Several enzymes (namely, α-amylases; pullulanases) cur-
rently used in food processing, namely, in starch hydrolysis,
are actually produced by recombinant microorganisms.
Despite some complexity in the implementation of their
use in large-scale applications, partly resulting from lack of
uniformity in the US and EU legislation, quite a few enzyme
preparations have been accepted for industrial use [88, 89].

3. Improving Biocatalysts:
Beyond Screening

Taking advantage of the knowledge gathered on molecular
biology, high-throughput processing, and computer-assisted
design of proteins, in-vitro improvement of biocatalysts
have been consistently implemented [90–93]. Some of the
research efforts in this area has focused on the biochemi-
cal and molecular mechanisms underlying the stability of
enzymes from extremophiles [31, 94–96]. Such knowledge
is also particularly useful for protein engineering of known
enzymes, aiming at enhancing stability without compro-
mising catalytic activity [97]. Enhancing the stability of
enzymes is of paramount importance when implementation
of industrial processes is foreseen, since it allows for reducing
the amount of enzyme used in the process. Given that
thermostability is determined by a series of short- and
long-range interactions, it can be improved by several
substitutions of amino acids in a single mutant, where the
combination of each individual effect is usually roughly
additive [98]. The targeted improvements have not been
restricted to thermostability, but they have also addressed
other features, such as broadening the range of pH where the
enzyme is active, or lessening the temperature of operation
while retaining high activity [91, 99].

Two methodologies can be used for protein engineering
[97].

(i) The first is directed evolution of enzymes, through
random mutagenesis and recombination, where the
environmental adaptation is reproduced in-vitro in a
much hastened timescale, towards the optimization
of the intended property. In order to control the
pathway of the process, either a screening test for
the assessed feature is performed after each round of
modification, or selective pressure is applied [100–
102]. This methodology, which allows for a high
throughput, has been extensively applied, aiming for
more efficient biocatalysts [103–106]. Some relevant
examples in the area of food and feed processing
include the following.

(1) The first is the enhancement of the activity of the
hyperthermostable glucose (xylose) isomerase from
Thermotoga neapolitana at relatively low temperature
and pH, without decay in thermostability [107].
The enzyme from the parent strain is highly active
at 97◦C, but it retains only 10% of its activity at
60◦C, and requires neutral pH for optimal activity.
This pattern is often reported when glucose iso-
merases from hyperthermophilic strains operate in
mesophilic environments. Large-scale glucose iso-
merization is carried out at 55–60◦C and slightly
alkaline pH [1, 31]. This set of conditions results from
the optimal range of pH (typically 7.0 to 9.0) and
temperature (60 to 80◦C) for glucose isomerization
displayed by most of the glucose isomerases used,
combined with process boundary conditions. The
latter result from by-product and color formation
occurring when the reaction is carried out at alka-
line pH and high temperatures [31, 108]. There is
therefore interest in selecting an enzyme able to
operate efficiently at temperatures close to those
currently used but at a lower pH. The mutant
glucose isomerase 1F1 obtained by Sriprapundh and
coworkers displayed a roughly 5-fold higher activity
at 60◦C and pH 5.5, when compared with the parent
T. neapolitana isomerase, and was more thermostable
than the wild type isomerase [104, 107]. The acti-
vation energy required by the triple 1F1 mutant
(V185T/L282P/F186S) was roughly half of the wild-
type, hence allowing for high activity at relatively
low temperatures [107]. The encouraging results
obtained suggest the soundness of the approach to
obtain a mutant glucose isomerase competitive with
those currently used, while being able to operate in a
slightly acidic environment and 60◦C.

(2) The second is the enhancement of the thermostability
of the maltogenic amylase from Thermus sp. IM6501
[109], of the amylosucrase from Neisseria polysac-
charea [110], of the glucoamylase from Aspergillus
niger [111], of a phytase from Escherichia coli [112,
113], and of a xylanase from Bacillus subtilis [114].
Amylases and glucoamylases are enzymes used in
starch processing, which involves temperatures typ-
ically in excess of 60◦C; hence, improving thermal
stability without decreasing enzyme activity is of
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Table 1: An overview of enzymes used in food and feed processing (adapted from [10, 12, 13, 68]).

Class Enzyme Role

Oxidoreductases
Glucose oxidase Dough strengthening

Laccases Clarification of juices, flavor enhancer (beer)

Lipoxygenase Dough strengthening, bread whitening

Transferases

Cyclodextrin
Cyclodextrin production

Glycosyltransferase

Fructosyltransferase Synthesis of fructose oligomers

Transglutaminase Modification of viscoelastic properties, dough processing, meat processing

Hydrolases

Amylases

Starch liquefaction and sachcarification

Increasing shelf life and improving quality by retaining moist, elastic and soft
nature

Bread softness and volume, flour adjustment, ensuring uniform yeast
fermentation

Juice treatment, low calorie beer

Galactosidase Viscosity reduction in lupins and grain legumes used in animal feed, enhanced
digestibility

Glucanase Viscosity reduction in barley and oats used in animal feed, enhanced digestibility

Glucoamylase Saccharification

Invertase Sucrose hydrolysis, production of invert sugar syrup

Lactase Lactose hydrolysis, whey hydrolysis

Lipase Cheese flavor, in-situ emulsification for dough conditioning, support for lipid
digestion in young animals, synthesis of aromatic molecules

Proteases (namely, chymosin, papain)
Protein hydrolysis, milk clotting, low-allergenic infant-food formulation,
enhanced digestibility and utilization, flavor improvement in milk and cheese,
meat tenderizer, prevention of chill haze formation in brewing

Pectinase Mash treatment, juice clarification

Peptidase Hydrolysis of proteins (namely, soy, gluten) for savoury flavors, cheese ripening

Phospholipase In-situ emulsification for dough conditioning

Phytases Release of phosphate from phytate, enhanced digestibility

Pullulanase Saccharification

Xylanases Viscosity reduction, enhanced digestibility, dough conditioning

Lyases Acetolactate decarboxylase Beer maturation

Isomerases Xylose (Glucose) isomerase Glucose isomerization to fructose

relevance. Starch liquefaction is performed at 105◦C
in the presence of α-amylase, upon which the effluent
reaction stream has to be cooled to 60◦C, so that glu-
coamylases can be used. In order to avoid, or at least
minimize, the cooling step, thermostable glucoamy-
lases are aimed at. Wang and coworkers obtained a
multiply-mutated enzyme (N20C, A27C, S30P, T62A,
S119P, G137A, T290A, H391Y), which displayed a
5.12 kJ mol−1 increase in the free energy of thermal
inactivation, when compared to the wild type, thus
resulting in the enhanced thermal stability of the
mutant. Furthermore specific activities and catalytic
efficiencies remained unaltered, when mutant and
wild type were compared [111]. Kim and coworkers
obtained also a multiply-mutated amylase (R26Q,
S169N, I333V, M375T, A398V, Q411L, P453L) which
displayed an optimal reaction temperature 15◦C
higher than that of the wild-type and a half-life of
roughly 170 min at 80◦C, a temperature at which

the wild-type ThMA was fully inactivated in less
than 1 minute. However, one of the mutations
most accountable for enhanced thermal stability,
M375T, close to the active site, also led to a 23%
decrease in specific activity, as compared to the wild
type [109]. The amylosucrase engineered by Emond
and coworkers was a double mutant (R20C/A451T),
displaying a 10-fold increase in the half-life at 50◦C
compared to the wild-type enzyme. Actually, the
mutant was claimed to be the only amylosucrase
usable at 50◦C. At the latter temperature, the mutant
enabled the synthesis of amylose chains twice as long
as those obtained by the wild-type enzyme at 30◦C,
for sucrose concentrations of 600 mM. The mutant
thus allowed for a process with increased yield in
amylose chains (31 g L−1), lower risk of contami-
nation, enhanced substrate and product solubility
and overall productivity [110]. Phytases are added to
animal feeds to improve phosphorus nutrition and
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Table 2: Some examples of strategies undertaken to improve the performance of enzymes with applications in food and feed.

Enzyme Role
Targeted
improvement

Strategy/comments Reference

α-amylase
Starch liquefaction Thermostability

Protein engineering through site-directed
mutagenesis. Mutant displayed increased
half-life from 15 min to about 70 min (100◦C).

[70]

Starch liquefaction Activity

Directed evolution. After 3 rounds the mutant
enzyme from S. cerevisiae displayed a 20-fold
increase in the specific activity when compared
to the wild-type enzyme.

[71]

Baking pH-activity profile
Protein engineering through site-directed
mutagenesis

[72]

l-arabinose
isomerase

Tagatose production pH-activity profile Protein engineering through directed evolution [73]

Glucoamylase Starch saccharification
Substrate specificity,
thermostability and
pH optimum

Protein engineering through site-directed
mutagenesis

[74]

Lactase Lactose hydrolysis Thermostability Immobilization [75]

Pullulanase Starch debranching Activity Protein engineering through directed evolution [76]

Phytase Animal feed pH-activity profile
Protein engineering through site-directed
mutagenesis

[77]

Xylose (glucose)
isomerase

Isomerization/epimerization
of hexoses, pentoses and
tetroses

pH-activity profile

Protein engineering through directed
evolution. The turnover number on D-glucose
in some mutants was increased by 30%–40%
when compared to the wild type at pH 7.3.
Enhanced activities are maintained between
pH 6.0 and 7.5.

[78]

Substrate specificity

Protein engineering through site-directed
mutagenesis. The resulting mutant displayed a
3-fold increase in catalytic efficiency with
L-arabinose as substrate.

[79]

Table 3: Examples of enzymes isolated from various marine higher organisms with potential of application in food and feed (adapted from
[68, 69]).

Class Enzyme Source

Transferases Transglutaminase Muscles of atka mackerel (Pleurogrammus azonus), botan shrimp (Pandalus nipponensis), carp
(Cyprinus carpio), rainbow trout (Oncorhynchus mykiss), scallop (Patinopecten yessoensis).

Hydrolases

Amylase

Gilt-head (sea) bream (Sparus aurata), found in Mediterranean sea and coastal North Atlantic
Ocean.

Turbot (Scophthalmus maximus), found mostly in Northeast Atlantic Ocean, Baltic, Black and
Mediterranean seas, and Southeast the Pacific Ocean

Deepwater redfish (Sebastes mentella, found in North Atlantic).

Chymotrypsin Atlantic cod (Gadus morhua), crayfish, white shrimp.

Pepsin Arctic capelin (Mallotus villosus), Atlantic cod (Gadus morhua).

Protease

Marine sponges Spheciospongia vesperia, found in Caribbean sea and South Atlantic, close to
Brazil, and Geodia cydonium, found in Northeast Atlantic Ocean and Mediterranean sea.

Mangrove crab (Scylla serrata), found in estuaries and mangroves of Africa, Asia and Australia.

Sardine Orange roughy (Hoplostethus atlanticus)

to reduce phosphorus excretion, by promoting the
hydrolysis of phytate into myoinositol and inorganic
phosphate. Thermal stable enzymes are needed, since
feed pelleting is carried out at high temperature
(60 to 80◦C). Phytases produced by thermophiles
do not provide a suitable approach, since they have
low activity at the physiological temperature of

animals [115]. E. coli phytases, which are appealing to
industrial application, due to the acidic pH optimum,
specificity phytate, and resistance to pepsin digestion,
were thus engineered in order to improve their
thermal stability, without compromising the kinetic
parameters. As a result, mutants were obtained,
with roughly 20% increased thermostability at 80◦C
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improved overall catalytic efficiency (kcat, turnover
number/KM, Michaelis constant) within 50 to 150%,
as compared to the wild type. No significant changes
in the pH activity profile were observed, but for
some mutants, containing a K46E substitution, that
displayed a decrease in activity at pH 5.0 [112, 113].
Xylanases catalyze the cleavage of β1,4 bonds in xylan
polymers. Accordingly, these enzymes can be used
in dough making, in baking, in brewing and in
animal feed compositions. When the latter contain
cereals (namely, barley, maize, rye or wheat), or cereal
by-products, xylanases improve the break-down of
plant cell walls, which favors the ingestion of plant
nutrients by the animals and consequently enhances
feed consumption and growth rate. Furthermore,
the use of xylanases decreases the viscosity of xylan-
containing feeds [116, 117]. As referred for phytases,
the formulation of commercial feed often involves
steps at high temperatures. Xylanases added to the
the formulations hence have to withstand these
conditions, while they are to display high activity
at about 40◦C, which is the temperature in the
intestine of animals. However, most xylanases are
inactive at temperatures exceeding 60◦C, hence the
need for enhancing thermal stability [114, 117].
Miyazaki and coworkers obtained a triple-mutant
xylanase (Q7H, N8F, and S179C) which retained full
activity for 2 hours at 60◦C, whereas the wild-type
enzyme was inactivated within 5 minutes under the
same conditions. The mutation also led to a 10◦C
increase in the optimal temperature for reaction and
enhanced activity at higher temperatures, albeit at the
cost of decreased activity at lower temperatures, as
compared to the wild-type enzyme [114].

(3) Third is the enhancement of the activity of the
amylosucrase from Neisseria polysaccharea [118].
Amylosucrases can be used for the modification or
synthesis of amylose-type polymers from sucrose, but
their industrial application is somehow thwarted by
the low catalytic efficiency on sucrose and by side
reactions leading to the formation of sucrose isomers.
Van der Veen and co-works engineered mutant
enzymes through error-prone PCR that displayed
increases in activity up to 5-fold and in overall
catalytic efficiency up to 2-fold, when compared to
the wild-type enzyme. Furthermore, the mutants
were able to produce amylose polymers from 10 mM
sucrose on, unlike the wild-type enzyme [118]. Their
work provides an illustrative example on the use
of random mutagenesis and recombination for the
enhancement of the catalytic properties of enzymes
with application on food and feed. Another example
was provided by Tian and coworkers who engineered
a phytase from Aspergillus niger 113 through gene
shuffling, to obtain mutants with enhanced catalytic
properties [119]. Hence, K41E and E121F substitu-
tions allowed for increases in the specific activity of
2.5- and 3.1-fold, and of affinity for sodium phytate,

as expressed by decreases in KM of roughly 35%
and 25%, as compared to the wild-type enzyme.
Furthermore, the overall catalytic efficiency of the
mutants increased 1.4- and 1.6-fold as compared to
the wild type.

Other examples can be found elsewhere [120, 121].

(ii) The second methodology underlines that rational
pinpoint modifications in one or more amino acids
are made, where these changes are predicted to bring
along the envisaged improvement in the targeted
enzyme function. The alterations promoted are per-
formed based on the growing knowledge on the
structure and functions of enzyme. Information on
this matter mostly comes from bioinformatics, which
provides data on amino-acid propensities and on
protein sequences. Adequate processing of the data
enable the output of generalized rules predicting
the effect of mutations on enzyme properties. Also
used are molecular potential functions, which, once
implemented, enable the prediction of the effect
of mutations in enzyme structure [97]. Compu-
tational tools used for enzyme engineering have
been recently reviewed [122]. Enzyme engineering
through molecular simulations requires structural
data from the native enzyme, which can be preferably
obtained from crystallography or NMR. Otherwise
a model is built based on known enzyme structures
with homologous sequences [90]. Computational
methods are also welcome in directed evolution,
as a tool to better lead the random mutagenesis
[97]. Ultimately this approach is put into practice
by producing a site-directed mutant, where selected
amino acids are replaced with those suggested from
the outcome of modeling.

Some relevant examples of this strategy in the area
of food and feed processing are given. These mostly
aim to improve thermal stability and/or catalytic effi-
ciency and/or to modify the range of pH/temperature
where the enzyme is active—goals that were already
referred to when examples of enzyme modifications
using random mutagenesis were addressed.

(1) The first example underlines the enhancement of the
thermostability of the recombinant glucose (xylose)
isomerase from Actinoplanes missouriensis [123, 124]
and of glucose (xylose) isomerase from Streptomyces
diastaticus [125]; of amylases from Bacillus spp. [126,
127]; and of glucoamylase from Aspergillus awamori
[128]. The mutant isomerase from A. missouriensis
displayed an enhanced thermal stability, alongside
with improved stability at different pH, as compared
with the original enzyme, with no changes in catalytic
properties [123, 124]. The double mutant isomerase
(G138P, G247D) displayed a 2.5-fold increase in
half-life, and additionally a 45% increase in the
specific activity, when compared to the wild type.
Such features were ascribed to increased molecular
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rigidity due to the introduction of a proline in
the turn of a random coil [125]. Multiply-mutated
amylases obtained by Declerck and coworkers dis-
played considered enhanced thermal stability. Based
on the temperature at which amylase initial activity
is reduced by 50% for a 10-minute incubation,
this parameter went as high as 106◦C, as compared
to 83◦C for the wild-type strain. Furthermore, the
thermal stabilization was not accompanied by a
decrease in the catalytic activity [126]. The work by
Lin and coworkers on amylase mutants from Bacillus
sp. strain TS-23 highlighted the relevance of E219
for the thermal stability of the enzyme [127]. The
mutated glucoamylases engineered by Liu and Wang
allowed to establish the role of several intermolecular
interactions in thermal stability of these enzymes.
Thermostable enzymes were obtained through the
introduction of disulfide bonds in highly flexible
region in the polypeptide chain of the enzyme, as well
as by the introduction of more hydrophobic residues-
stabilized α-helices. Data gathered also showed that
care had to be taken not to disrupt the hydrogen bond
and salt linkage network in the catalytic center as a
result of mutagenesis, for this could lead to a decrease
in the specific activity and overall catalytic efficiency
[128].

(2) The second example underlines the enhancement of
the pH-activity profile and of the thermostability
of phytase from A. niger. This was achieved by
combining several individual mutations that allowed
for mutants that were quite active at pH 3.5. Effi-
cient operation in the stomach of simple-stomached
animals where phytate hydrolysis mostly occurs at a
pH around 3.5, and the wild type was ineffective, was
thus enabled. Furthermore, the hydrolytic activity of
the mutants at pH 3.5 exceeded in roughly 1.5-fold
that of the parent one at pH 5.5, which was the
optimum of the latter. Mutants also retained higher
residual activity after incubation within 70 to 100◦C,
as compared to the wild type. The work demonstrates
that cumulative improvements in pH activity and
thermostability through mutation are compatible in
this phytase; see [129].

(3) The third example underlines the modification of
the temperature- and pH activity profile of the l-
arabinose isomerase from Bacillus stearothermophilus
US100 [130]. l-Arabinose isomerases catalyze the
conversion of l-arabinose to l-ribulose in-vivo, but
in-vitro they also isomerize d-galactose into d-
tagatose [130]. The latter keto-hexose is being used
as a low-calorie bulk sweetener, since its taste and
sweetness are roughly equivalent to sucrose, but the
caloric value is only 30% of that of sucrose [131,
132]. Although several thermostable l-arabinose iso-
merases have been isolated and characterized, most of
these display an alkaline pH optimum. For industrial
application this presents the same drawbacks of
by-product and color formation referred to when

the random mutation of glucose isomerases was
addressed. Hence, again arises the need for enzymes
able to isomerize l-arabinose in an acidic environ-
ment and at relatively low temperature, 60 to 70◦C.
Operation within the latter temperature range also
rules away the use of divalent ions, which stabilize
isomerases at high temperatures [133, 134]. Rhimi
and coworkers engineered two individual mutants,
harboring each N175H and Q268K mutations. These
led to broader optimal temperature range within 50
to 65◦C and to enhanced stability in acidic media,
respectively, when compared to the wild type. An
engineered double mutant, harboring both modifi-
cations, displayed optimal activity within a pH range
of 6.0 to 7.0 and a temperature range within 50–
65◦C. Such set of operational conditions matches the
targeted goals and again shows that the basis for pH-
activity profile and thermostability in l-arabinose
isomerase are quite independent and compatible.
Cumulative enhancements in both properties in the
same enzyme were thus possible [134]. A similar
pattern was also observed in the previous example
dedicated to a mutant phytase.

(4) The fourth example underlines the modification of
the product profile of inulosucrase from Lactobacillus
reuteri [135] and from B. subtilis [136]. Inulosucrases
are used to synthesize fructooligosaccharides or fruc-
tan polymer from sucrose. The transglycosylation
catalyzed by the inulosucrase from L. reuteri leads
to a wide range of fructooligosaccharides alongside
with minor amounts of an inulin polymer. In order
to minimize the dispersion in the products obtained,
mutants R423K and W271N were obtained, which
allowed the synthesis of a significant amount of
polymer and a lower amount of oligosaccharide,
without significantly affecting the catalytic activity,
when compared with the wild type. The data gathered
showed that the −1 subsite in the inulosucrase
from L. reuteri has a key role in the determination
of the size of the products obtained [135]. Ortiz-
Soto and coworkers also showed that the product
profile of transfructosylation reactions could be
adequately tuned through modification of target
residues of an inulosucrase from B. subtilis. These
authors established the effect of mutations on the
reaction specificity (hydrolysis/transfructosylation),
molecular weight and acceptor specificity. For exam-
ple, engineered mutants R360S, Y429N and R433A
only synthesized oligosaccharides, whereas the wild
type synthesized levan, since the former are more
hydrolytic. On the other hand these mutations
reduced the affinity for sucrose, and thermal stability,
when compared to the wild type [136].

(5) The fifth example underlines the enhancement of
the product profile of cyclodextrin glycosyltrans-
ferases (CGTase) from differentgenera [137, 138].
These enzymes promote the production of cyclodex-
trins, α(1→ 4) linked oligosaccharides form starch,
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through an intramolecular transglycosylation reac-
tion. In the process, a starch oligosaccharide is cleaved
and cleaved and the resulting reducing-end sugar
is transferred to the non-reducing-end sugar of the
same chain [137]. The resulting cyclodextrin may
consist of six, seven or eight, which are accord-
ingly termed α, β, or γ-cyclodextrin, respectively.
Given their ability to form inclusion complexes with
small hydrophobic molecules, they are of interest
for both industrial and research applications. Wild-
type CGTases typically produce a mixture of the
three cyclodextrins when incubated with starch. The
purification of a given cyclodextrin from the reaction
mixture requires several additional steps, including
selective complexation with organic solvents, which
may prove restrictive for cyclodextrin applications
involving human consumption [139, 140]. There
is therefore a clear interest in obtaining a mutant
CGTase capable of producing a particular type of
cyclodextrin in a high rate. Van der Veen and cowork-
ers engineered a double-mutant (Y89D/S146P) of
CGTase from Bacillus circulans which displayed a 2-
fold increase in the production of α-cyclodextrin and
a marked decrease in β-cyclodextrin when compared
to the wild type. From the data gathered, the
authors suggested that hydrogen bonds (S146) and
hydrophobic interactions (Y89), are likely to play
a key role in to the size of cyclodextrin products
formed, and that changes in sugar-binding subsites
−3 and−7 may result in mutant CGTases with altered
product specificity [137]. Li and coworkers were also
able to obtain CGTase mutants from Paenibacillus
macerans strain JFB05-01 with increased specificity
for α-cyclodextrin, through mutations at subsite
−3. In particular, double mutant D372K/Y89R dis-
played a 1.5-fold increase in the production of
α-cyclodextrin, and a significant (roughly 45%)
decrease in the production of β-cyclodextrin when
compared to the wild-type enzyme [138].

The two methods are not mutually exclusive and meth-
odologies for engineering of enzymes can assemble both
strategies [141].

Upon identification of the most adequate enzyme, this
can be formulated adequately for better process integration.
One of the most widely considered approaches for such
formulation is enzyme immobilization.

4. Immobilization

There are several issues that can be lined up to sustain
enzyme immobilization. It allows for high-enzyme load
with high activity within the bioreactor, hence leading
to high-volumetric productivities; it enables the control
of the extension of the reaction; downstream process is
simplified, since biocatalyst is easily recovered and reused;
the product stream is clear from biocatalyst; continuous
operation (or batch operation on a drain-and-fill basis) and
process automation is possible; and substrate inhibition can

be minimized. Along with this, immobilization prevents
denaturation by autolysis or organic solvents, and can bring
along thermal, operational and storage stabilization, pro-
vided that immobilization is adequately designed [142, 143].
Immobilization has some intrinsic drawbacks, namely, mass
transfer limitations, loss of activity during immobilization
procedures, particularly due to chemical interaction or
steric blocking of the active site; the possibility of enzyme
leakage during operation; risk of support deterioration
under operational conditions, due to mechanical or chemical
stress; and a (still) relative empirical methodology, which
may hamper scale up. Economical issues are furthermore
to be taken into consideration when commercial processes
are envisaged, although immobilization can prove critical for
economic viability if costly enzymes are used. Still, the cost
of the support, immobilization procedure and processing the
biocatalyst once exhausted, up- and downstream processing
of the bioconversion systems, and sanitation requirements
have to be taken into consideration. In the overall, the
enhanced stability allowing for consecutive reuse leads to
high specific productivity (mass−1

product mass−1
biocatalyst), which

influences biocatalyst-related production costs [1, 142].
A typical example is the output of immobilized glucose
isomerase, allowing for 12,000–15,000 kg of dry-product
high-fructose corn syrup (containing 42% fructose) per
kilogram of biocatalyst, throughout the operational lifetime
of the biocatalyst [144]. Increased thermal stability, allowing
for routine reactor operation above 60◦C minimizes the risks
of microbial growth, hence leading to lower risks of microbial
growth and to less demanding sanitation requirements, since
cleaning needs of the reactor are less frequent [1, 144].
A rule of thumb suggesting that the enzyme costs should
be a few percent of the total production costs has been
established [142]. The half-life of the bioreactor is also a
critical issue when evaluating the economical feasibility of a
bioconversion process, longer half-lives favoring process eco-
nomics. Examples of commercial bioreactors depict half-lives
of several months to years, and the same packing can work
throughout some months to years. Among this group, are
immobilized enzyme reactors packed with glucose isomerase
for the production of high-fructose corn syrup; lactase for
lactose hydrolysis, for the production of whey hydrolysates
and for the production of tagatose; aminoacylase for the
production of amino acids; isomaltulose synthase for the
production of isomaltulose; invertase for the production
of inverted sugar syrup; lipases for the interesterification
of edible oils, ultimately targeted at the production of
trans-free fat, of cocoa butter equivalents, and of modified
triacylglycerols; and β-fructofuranosidase for the production
of fructooligosaccharides [144–146]. On the other hand,
despite the technical advantages of immobilization, the large-
scale liquefaction of starch to dextrins by α-amylases is
performed by free enzymes, given the low cost of the enzyme
[18].

Immobilization can be performed by several methods,
namely, entrapment/microencapsulation, binding to a solid
carrier, and cross-linking of enzyme aggregates, resulting in
carrier-free macromolecules [142]. The latter presents an
alternative to carrier-bound enzymes, since these introduce



Enzyme Research 9

a large portion of noncatalytic material. This can account
to about 90% to more than 99% of the total mass of
the biocatalysts, resulting in low space-time yields and
productivities, and often leads to the loss of more than
50% native activity, which is particularly noticeable at high
enzyme loadings [142]. A broad, generalized overview of the
advantages and drawbacks of the different immobilization
approaches is given in Table 4. A typical example of the
patterns suggested by data in Table 4 was observed by Abdel-
Naby when evaluating the immobilization of α-amylase
through different methods [147]. Details on the different
methods, as well as some illustrative examples of their
applications, are given hereafter.

Entrapment/(micro)encapsulation, where the enzyme is
contained within a given structure. This can be: a polymer
network of an organic polymer or a sol-gel; a membrane
device such as a hollow fiber or a microcapsule; or a (reverse)
micelle. Apart from the hollow fiber, the whole process
of immobilization is performed in-situ. The polymeric
network is formed in the presence of the enzyme, leading
to supports that are often referred to as beads or capsules.
Still, the latter term could preferably be used when the core
and the boundary layer(s) are made of different materials,
namely, alginate and poly-l-lysine. Although direct contact
with an adverse environment is prevented, mass transfer
limitations may be relevant, enzyme loading is relatively
low, and leakage, particularly of smaller enzymes from
hydrogels (namely, alginate, gelatin), may occur. This may
be minimized by previously cross-linking the enzyme with
multifunctional agent (namely, glutaraldehyde) [148, 149]
or by promoting cross-linkage of the matrix after the
entrapment [150]. The use of LentiKats, a polyvinyl-alcohol-
based support in lens-shaped form, has been used for several
applications in carbohydrate processing. Among these are
the synthesis of oligosaccharides with dextransucrase [149],
maltodextrin hydrolysis with glucoamylase [151], lactose
hydrolysis with lactase [152], and production of invert sugar
syrup with invertase [153]. In these processes the biocatalyst
could be effectively reused or operated in a continuous
manner. Methodologies for large scale production of these
supports have been implemented [154, 155]. Flavourzyme,
(a fungal protease/peptidase complex) entrapped in calcium
alginate [156], k-carragenan, gellan, and higher melting-fat
fraction of milk fat [157], was effectively used in cheese
ripening, in order to speed up the process, while avoiding
the problems associated with the use of free enzyme. These
include deficient enzyme distribution, reduced yield and
poor-quality cheese, partly ascribed to excessive proteolysis
and whey contamination. The enzyme complex is released in
a controlled manner due to pressure applied during cheese
curd [156].

Calcium alginate beads were also used to immobilize
glucose isomerase [158] and α-amylase for starch hydrolysis
to whey [159]. In the latter work, the authors observed that
increasing the concentration of CaCl2 and of sodium alginate
to 4% and 3%, respectively, enzyme leakage was minimized
(a common drawback of hydrogels) while allowing for high
activity and stability. This effect was also observed in a
previous work where alginate-entrapped inulinase was used

for sucrose hydrolysis [160]. The stability of an amylase
immobilized biocatalyst was further enhanced with the
addition of 1% silica gel to the alginate prior to gelation, as
reflected by the use of the biocatalyst in 20 cycles of opera-
tion, while retaining more than 90% of the initial efficiency
[159]. Several enzymes, namely, chymosin, cyprosin, lactase,
Neutrase, trypsin, have also been immobilized in liposomes,
[161]. In a particularly favored technique immobilization of
enzymes in liposomes, known as dehydration-rehydration
vesicles (DRVs), small (diameters usually below 50 nm)
unilamellar vesicles (SUVs) is prepared in distilled water
and mixed with an aqueous solution of the enzyme to
be encapsulated. The resulting vesicle suspension is then
dehydrated under freeze drying or equivalent method. Upon
rehydration, the resulting DRVs are multilamellar and larger
(from 200 nm to a little above 1000 nm) than the original
SUVs, and can capture solute molecules [161, 162]. Recent
work in this particular application has used lactase as
enzyme model and has focused on the optimization and
characterization of the liposome-based immobilized system
[163, 164]. If liposome-based biocatalysts are used in a
process under continuous operation, biocatalyst separation
has to be integrated (namely, using an ultra-filtration
membrane). In a different concept, based in batch mode,
liposome-encapsulated lactase was incorporated in milk.
After ingestion, the vesicles are disrupted in the stomach
by the presence of bile salts, allowing in-situ degradation of
lactose [165]. Cocktails of enzymes, namely, Flavourzyme,
bacterial proteases and Palatase M (a commercial lipase
preparation), were immobilized in liposomes and success-
fully used to speed up cheddar cheese ripening [166].
Encapsulation in lipid vesicles has been proved a mild
method, providing high protection against proteolysis. There
is however some lack of consensus on the feasibility of its
application on large scale, as well as on the effectiveness
of the methodology for controlled release of enzymes [156,
157, 161, 163, 167]. Containment within an ultra-filtration
(UF) membrane allows the enzyme to perform in a fully
fluid environment; hence, with little loss (if any) of catalytic
activity. However, the membrane still presents a boundary
for overall mass transfer of substrate/products and enzyme
molecules are prone to interact with the membrane material.
This feature is enhanced along with the hydrophobicity
of the membrane, hence immobilization in membrane
devices may have some adsorptive nature, a feature that
will be addressed in (ii). Besides, regular replacement of
the membrane may be required. Enzyme containment by a
membrane has been used for the continuous production of
galactooligosaccharides from lactose. The reaction, with up
to 80% lactose conversion out of a substrate concentration
of 250 gL−1, was carried out in a perfectly mixed reactor and
enzyme was recovered in a 10 kDa nominal molecular weight
cutoff. The resulting product presented some similarities to
the commercially available Vivinal prebiotic [168]. Within
the same methodology, a hollow-fiber module was used to
contain lactase, in order to carry out lactose hydrolysis in
continuous operation. A conversion rate close to 95% in skim
milk was observed for an initial substrate concentration close
to 40 gL−1 [169].
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Table 4: A generalized characterization of immobilization methods.

Parameter
Immobilization method

Carrier binding
CLEAs, CLECs Entrapment

Covalent Ionic Adsorption

Activity High High Low Intermediate/High High

Range of application Low Intermediate Intermediate Low Intermediate/High

Immobilization efficiency Low Intermediate High Intermediate Intermediate

Cost Low Low High Intermediate Low

Preparation Easy Easy Difficult Intermediate Intermediate/Difficult

Substrate specificity Cannot be changed Cannot be changed Can be changed Cannot be changed Can be changed

Regeneration Possible Possible Impossible Impossible Impossible

Binding to a solid carrier, where enzyme-support inter-
action can be of covalent, ionic, or physical nature. The latter
comprehends hydrophobic and van der Waals interactions.
These are of weak nature and easily allow for enzyme leakage
from the support, namely, after environmental shifts in pH,
ionic strength, temperature or even as a result of flow rate
or abrasion. On the other hand, desorption can be turned
into an advantage if performed under a controlled manner,
since it enables the expedite removal of spent enzyme and
its replacement with fresh enzyme [170]. A recent paper
by Gopinath andSugunan illustrates the increased trend for
leakage when adsorption is compared with covalent binding,
using α-amylase as model enzyme [171]. Curiously, the
first reported application of enzyme immobilization was of
invertase onto activated charcoal [172]. Recently invertase
was immobilized in different types of sawdust, aiming at its
application for sucrose hydrolysis. When wood shavings were
used as support, the immobilized invertase retained 90%
of the original activity after 20 cycles of 15 minutes, each
under consecutive batch operation; and it retained 65% of
the original activity after 10 hours of continuous operational
regime in a column reactor [173]. Anther example is the
immobilization of pectinase in egg shell for the preparation
of low-methoxyl pectin. The immobilized biocatalyst could
be reused for 32 times at 30◦C, and it was used in a
fluidized-bed reactor, operated at an optimum flow rate of
5 mL h−1 and 35◦C [174]. Other examples are the surface
immobilizations of α-amylase on alumina [175] and in
zirconia [176]. Covalent binding is the strongest form of
enzyme linking to a solid support. It involves chemically
reactive sites of the protein such as amino groups, carboxyl
groups, and phenol residues of tyrosine; sulfhydryl groups;
or the imidazole group of histidine. The binding can be
carried out by several methods; among them are amide
bond formation, alkylation and arylation, or UGI reaction.
However, this often brings along loss of activity during the
process of immobilization, due to support binding to critical
residues for enzyme activity, and steric hindrance, among
others. Examples include the immobilization of α-amylase
[177] and of levansucrase [178] on glutaraldehyde-treated
chitosan beads, through the glutaraldehyde reaction between
the free amino groups of chitosan and the enzyme molecule;
the immobilization of pectinase onto Amberlite IRA900 Cl
through glutaraldehyde cross-linking [179]; glucoamylase

onto dried oxidized bagasse [180], onto polyglutaraldehyde-
activated gelatin [181], or onto macroporous copolymer
of ethylene glycol dimethacrylate and glycidyl methacrylate
through the carbohydrate moiety of the enzyme [182]; glu-
coamylase or invertase immobilized onto montmorillonite
K-10 activated with aminopropyltriethoxysilane and glu-
taraldehyde [183, 184]; and invertase immobilized on nylon-
6 microbeads, previously activated with glutaraldehyde and
using PEI as spacer [185, 186]; on polyurethane treated
with hydrochloric acid, polyethylenimine and glutaralde-
hyde [187]; on poly(styrene-2-hydroxyethyl methacrylate)
microbeads activated with epichlorohydrin [188]; or on
poly(hydroxyethyl methacrylate)/glycidyl methacrylate films
[189]. Within this methodology for immobilization, high-
light should be given to the introduction of commer-
cial supports (namely, Eupergit, Sepabeads) with a high
density of epoxide functional groups aimed at multipoint
attachment, typically with the ε-amino group of lysine, to
confer high rigidity to the enzyme molecule, hence enhanc-
ing stabilization [190, 191]. This methodology has been
used for lactase immobilization in magnetic poly(GMA-
MMA), formed from monomers of glycidylmethacrylate
and ethylmethacrylate, and cross-linked with ethyleneglycol
dimethacrylate [192]; for the immobilization of cyclodextrin
glycosyltransferases to glyoxylagarose supports for the pro-
duction of cyclodextrins [193]; or for the immobilization of
dextransucrase on Eupergit C [194]. Ionic binding to a car-
rier involves interaction of negatively or positively charged
groups of the carrier with charged amino-acid residues
on the enzyme molecules [195]. Ionic interaction may be
favored if enzyme leakage is not an issue, since it allows
for support regeneration, unlike immobilization by covalent
binding. Ion-exchanger resins are typical supports for ionic
binding; among them are derivatives of cross-linked polysac-
charides, namely, carboxymethyl- (CM-) cellulose, CM-
Sepharose, diethylaminoethyl- (DEAE-) cellulose, DEAE-
Sephadex, quaternary aminoethyl anion exchange- (QAE-
) cellulose, QAE-dextran, QAE-Sephadex; derivatives of
synthetic polymers, namely, Amberlite, Diaion, Dowex,
Duolite; and resins coated with ionic polymers, namely,
polyethylenimine (PEI) [196]. Recent examples include the
immobilization of invertase in Dowex [197], in Duolite
[198], in poly(glycidyl methacrylate-co-methyl methacry-
late beads grafted with PEI [199], and in epoxy(amino)
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Sepabeads [200]; lactase immobilization in PEI-grafted
Sepabeads [201]; fructosyltransferase in DEAE-cellulose for
the production of fructosyl disaccharides [202]; glucose
isomerase in DEAE-cellulose [203] or in Indion 48-R [204];
glucoamylase onto SBA-15 silica [205] and in epoxy(amino)
Sepabeads [200]. Ionic binding to Sepabeads-like supports
has acknowledged multipoint attachment nature. Enzyme
molecules can be modified chemically or genetically mod-
ified to enhance immobilization efficiency, an approach fol-
lowed by Kweon and coworkers, who obtained a cyclodextrin
glycosyltransferase fused with 10 lysine residues to improve
ionic binding to SP-Sepharose [206].

Carrier-free macroparticles, where a bifunctional reagent
(namely, glutaraldehyde), is used to cross-link enzyme aggre-
gates (CLEAs) or crystals (CLECs), leading to a biocatalyst
displaying highly concentrated enzyme activity, high stability
and low production costs [142, 207]. The use of CLEAs
is favored given the lower complexity of the process. This
approach is recent, as compared with entrapment and
binding to a solid carrier, and there are still relatively few
examples of its application to enzymes used in the area of
food processing. Among those are following.

(1) First is the immobilization of Pectinex Ultra SP-
L, a commercial enzyme preparation containing
pectinase, xylanase, and cellulose activities [208]. The
CLEA biocatalyst displayed a slight (30%) in the
Vmax, maximal reaction rate/KM ratio, but a signifi-
cant enhancement in thermal stability (a roughly 10-
fold increase in half-life), when the pectinase activity
of the immobilized biocatalyst was compared with
the free form.

(2) Second is the immobilization of lactase for the
hydrolysis of lactose, where, under similar opera-
tional conditions as for the free enzyme, the CLEA
yielded 78% monosaccharides in 12 h as compared
to 3.9% of the free form [209].

(3) Third, CLEAs of glucoamylase, formed by either
glutaraldehyde or diimidates, namely, dimethylmal-
onimidate, dimethylsuccinimidate, and dimethylglu-
tarimidate, led to biocatalysts with improved thermal
stability as compared to the free form (over 2-fold
increase in half-lives) [210].

(4) Fourth, CLEAs of wild type and two mutant levan-
sucrases were assayed for oligosaccharides/levan and
for fructosyl-xyloside synthesis. Although the specific
activity of the three free enzymes was 1.25- to 3-
fold higher than the corresponding CLEAs, these
displayed a 40- to 200-fold higher specific activity
than the equivalent Eupergit-C-immobilized enzyme
preparations. Furthermore, all CLEA preparations
displayed enhanced thermal stability when compared
with the corresponding free enzymes [211].

(5) Fifth are CLECs of glucose isomerase, aimed at the
conversion of glucose into fructose for the pro-
duction of high fructose corn syrup. When placed
in a packed-bed, the resulting enzyme preparation
allowed for flow rates that matched or even exceeded

those processed by commercially available enzyme
preparations (either free, carrier free, or carrier-
bound), while achieving the same 45% yield in
fructose, under similar operational condition [212].

(6) Sixth, CLECs of glucose isomerase packed in a
column were also used for the concentration/puri-
fication of xylitol from dilute or impure solutions.
The approach was based on the high specificity
of the enzyme crystals towards xylitol, allowing its
separation from other sugars, including the nat-
ural substrates, xylose and glucose. Recovery of
the adsorbed xylitol was achieved by elution with
CaCl2 solutions, with Ca2+ being acknowledged to
inactivate glucose isomerase [213].

Each method for enzyme immobilization has a unique
nature. Therefore, despite the potential of immobilization to
improve enzyme performance by enhancing activity, stabil-
ity, or specificity, no specific approach tackles simultaneously
these different features. A careful evaluation and charac-
terization of the methodology addressed is thus required,
which can be significantly fastened by high-throughput
approaches [214]. Again, the feasibility of its application to
reactor configuration and mode of operation has also to be
considered in the selection process of the most adequate
immobilized biocatalyst for a given bioconversion.

4.1. Typical Bioreactors. The most common form of enzy-
matic reactors for continuous operation is the packed-bed
setup, basically a cylindrical column holding a fixed bed
of catalyst particles (Figure 1). These should not have sizes
below 0.05 mm, in order to keep the pressure drop within
reasonable limits. Commercially available carriers such as
Eupergit C have particle sizes of roughly 0.1 mm [215].
Commonly operated in down-flow mode, the range of flow
rates used must be such as to provide a compromise between
reasonable pressure drop, minimal diffusion layer and high
conversion yield. Minimization of external mass-transfer
resistances with enhanced flow rates can be considered,
leading to the fluidized-bed reactor. This is basically a
variation of the packed-bed reactor, but operated in up-
flow mode, where the biocatalyst particles are not in close
contact which each other; hence, pressure drop is low, and
accordingly are pumping costs. The residence time allowed
by the flow rates required for fluidization may however
result in low conversion yields. This can be overcome by
operating a battery of reactor or by operation in recycle
mode [216]. Bioconversions with free enzymes are carried
out in stirred tanks. When on their own, they are restricted
to batch mode, but when coupled to a membrane setup
with suitable cutoff, they can be integrated in a continuous
process, since the enzymes are rejected by the membrane,
which acts as an immobilization device, whereas the product
(and unconverted substrate) freely permeates. Shear stress
induced by stirring creates a hazardous environment for
immobilized biocatalysts, particularly when hydrogels are
considered, since they are prone to abrasion. In order to
overcome this, a basket reactor was developed, but is seldom
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Figure 1: Examples of bioreactor configurations commonly used in bioconversion processed involving free or immobilized enzymes.
Reactors (a) to (d) are depicted under continuous mode of operation, whereas reactor (e) is depicted.

used, possibly due to mass transfer resistances associated
[18].

5. Conclusions and Future Perspectives

The integration of enzymes in food and feed processes is a
well-established approach, but evidence clearly shows that
dedicated research efforts are consistently being made as
to make this application of biological agents more effective
and/or diversified. These endeavors have been anchoring
in innovative approaches for the design of new/improved
biocatalysts, more stable (to temperature and pH), less
dependent on metal ions and less susceptible to inhibitory
agents and to aggressive environmental conditions, while
maintaining the targeted activity or evolving novel activities.
This is of particular relevance for application in the food
and feed sector, for it allows enhanced performance under
operational conditions that minimize the risk of microbial
contamination. It also favors process integration, by allowing
the concerted use of enzymes that naturally have diverse
requirements for effective application. Such progresses have
been made through the ever-continuing developments in
molecular biology, the accumulated evolutionary enzyme
engineering expertise, the (bio)computational tools, and the
implementation of high-throughput methodologies, with
high level of parallelization, enabling the efficient and timely
screening/characterization of the biocatalysts. Alongside
with these strategies, the immobilization of enzymes has also
been a key supporting tool for rendering these proteins fit
for industrial application, while simultaneously enabling the
improvement of their catalytic features. Again, and despite
the developments made in this particular field, there is still
the lack of a set of unanimously applicable rules for the
selection of carrier and method of enzyme immobilization,
which furthermore encompass both technical and economic
requirements. The latter can be particularly restrictive in

the food and feed sector, since most products are of relatively
low added value. Therefore, there is no universal support
and method for enzyme immobilization aimed at application
in food and feed (let alone the overall range of possible
fields of use), and the immobilized biocatalyst fit for a given
process and product may be totally unsuitable for another.
Given the diversity of enzyme nature and applications this
pattern is unlikely to be reversed. Hence, it can be foreseen
that efforts will be towards the development of immobilized
biocatalyst with suitable chemical, physical, and geometric
characteristics, which can be produced under mild condi-
tion, that can be used in different reactor configurations and
that comply with the economic requirements for large-scale
application. All these strategies either isolated or preferably
suitably integrated have been put into practice in food and
feed, to improve existing processes or to implement new
ones, with the latter often combined with the output of new
goods, resulting from novel enzymatic activities. Given the
recent developments in this field, this trend is foreseen to be
further implemented.
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