Inhibition of enzymatic browning in foods and beverages

Arthur J. McEvily, Radha Iyengar & W. Steven Otwell

To cite this article: Arthur J. McEvily, Radha Iyengar & W. Steven Otwell (1992) Inhibition of enzymatic browning in foods and beverages, Critical Reviews in Food Science and Nutrition, 32:3, 253-273, DOI: 10.1080/10408399209527599

To link to this article: https://doi.org/10.1080/10408399209527599

Published online: 29 Sep 2009.

Submit your article to this journal

Article views: 848

View related articles

Citing articles: 254 View citing articles
Inhibition of Enzymatic Browning in Foods and Beverages

Arthur J. McEvily and Radha Iyengar
Opta Food Ingredients, Inc., 64 Sidney Street, Cambridge, MA 02139

W. Steven Otwell
Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611

ABSTRACT: Enzymatic browning is a major factor contributing to quality loss in foods and beverages. Sulfiting agents are used commonly to control browning; however, several negative attributes associated with sulfites have created the need for functional alternatives. Recent advances in the development of nonsulfite inhibitors of enzymatic browning are reviewed. The review focuses on compositions that are of practical relevance to food use.

KEY WORDS: enzymatic browning, polyphenol oxidase, inhibition, antibrowning agents, melanosis.

I. INTRODUCTION

Browning of raw fruits, vegetables, and beverages is a major problem in the food industry and is believed to be one of the main causes of quality loss during postharvest handling and processing. The mechanism of browning in foods is well characterized and can be enzymatic or nonenzymatic in origin. Nonenzymatic browning results from polymerization of endogenous phenolic compounds, as well as from the Maillard reaction that occurs when mixtures of amino acids and reducing sugars are heated. This article focuses on the various approaches taken to inhibit the enzymatic component of the browning reaction only. Note that several of the approaches described below may inhibit both components of the browning reaction.

The formation of pigments via enzymatic browning is initiated by the enzyme polyphenol oxidase (PPO; monophenol, L-DOPA: oxygen oxidoreductase; EC 1.14.18.10), also known as tyrosinase, phenol oxidase, monophenol oxidase, or cresolase. Endogenous PPO activity is present in foods that are particularly sensitive to oxidative browning, e.g., potatoes, apples, mushrooms, bananas, peaches, fruit juices, and wines. Browning is more severe when the food has been subjected to surface damage, which can result from cutting, peeling, comminuting, pureeing, pitting, pulping, or freezing. In uncut or undamaged fruits and vegetables, the natural phenolic substrates are separated from the PPO enzyme by compartmentalization, and browning does not occur. Browning can cause deleterious changes in the appearance and organoleptic properties of the food product, resulting in shorter shelf-life, decreased market value, and, in some cases, complete exclusion of the food product from certain markets. On the other hand, in certain situations, such as the manufacture of tea, coffee, cocoa, raisins, or cider, a specific degree of browning is desirable and is an essential part of the production process.

Enzymatic browning is the result of PPO-catalyzed oxidation of mono- and diphenols to
o-quinones (Figure 1). PPO is a mixed function oxidase that catalyzes both the hydroxylation of monophenols to diphenols (cresolase activity) and the subsequent oxidation to o-quinones (catecholase activity). This enzyme is ubiquitous in fruits, vegetables, and animals.3-5 The o-quinones are highly reactive compounds and can polymerize spontaneously to form high-molecular-weight compounds or brown pigments (melanin), or react with amino acids and proteins that enhance the brown color produced.4-6-7

The most effective method for controlling enzymatic browning in canned or frozen fruits and vegetables is to inactivate the PPO by heat treatment, such as by steam blanching, but this is not a practical alternative for treatment of fresh foods. As browning is an oxidative reaction it can be retarded by the elimination of oxygen from the cut surface of the fruit or vegetable, although browning will occur rapidly when oxygen is re-introduced. Exclusion of oxygen is possible by immersion in deoxygenated water, syrup, brine, or by vacuum deoxygenation,8 or coating of the food with surfactants.9 These processes can be relatively expensive or impractical. A more common approach for the prevention of browning of food and beverages has been the use of anti-browning agents. Antibriowing agents are compounds that either act primarily on the enzyme or react with the substrates and/or products of enzymatic catalysis in a manner that inhibits pigment formation. The use of antibrowning agents in the food industry is constrained by considerations such as toxicity, effects on taste, flavor, color, texture, and cost.

The most widespread methodology used in the food and beverage industries for control of browning is the addition of sulfiting agents. Sulfites are currently used to inhibit melanosis (blackspot) in shrimp, browning of potatoes, mushrooms, apples, and other fruits and vegetables, as well as to stabilize the flavor and color of wines. The major effect of sulfites on enzymatic browning is to reduce the o-quinones produced by PPO catalysis to the less reactive, colorless diphenols, thereby preventing the nonenzymatic condensations to precipitable pigments (Figure 2). In some instances, excessive concentrations of sulfiting agents are used to bleach brown or black pigments that may have developed prior to treatment. Sulfiting agents are also antimicrobial when used in sufficient concentration.

Although sulfites are very effective in the inhibition of both enzymatic and nonenzymatic browning reactions, there are several negative attributes associated with their use in foods and beverages. Sulfites are known to cause adverse health effects, especially in certain sensitive individuals such as steroid-dependent asthmatics. Several deaths have resulted due to consumption of sulfited foods among this highly sensitive

![Figure 1](https://example.com/figure1.png)

FIGURE 1. Simplified schematic of the initiation of browning by polyphenol oxidase. (Adapted from Walker, J. R. L., Food Technol. N. Z., 19, 21, 1977. With permission.)
FIGURE 2. The primary role of reducing agents such as sulfiting agents or ascorbyl compounds in the inhibition of enzymatic browning is to reduce the pigment precursors (quinones) to colorless, less-reactive diphenols. (Adapted from Walker, J. R. L., Food Technol. N. Z., 19, 21, 1977.)

Section II reviews recent advances in the development of nonsulfite antibrowning agents, with particular emphasis on their use in the food industry. The agents have been classified according to their primary mode of action (Table 1). As can be seen in Table 1, there are many approaches available to food technologists to inhibit brown-

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Representative Inhibitors of Enzymatic Browning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing agents</td>
<td>Chelating agents</td>
</tr>
<tr>
<td>Sulfiting agents</td>
<td>Phosphates</td>
</tr>
<tr>
<td>Ascorbic acid and analogs</td>
<td>EDTA</td>
</tr>
<tr>
<td>Glutathione</td>
<td>Organic acids</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Acidulants</td>
</tr>
<tr>
<td>Enzyme inhibitors</td>
<td>Citric acid</td>
</tr>
<tr>
<td>Aromatic carboxylic acids</td>
<td>Phosphoric acid</td>
</tr>
<tr>
<td>Aliphatic alcohols</td>
<td>Complexing agents</td>
</tr>
<tr>
<td>Substituted resorcinols</td>
<td>Cyclodextrins</td>
</tr>
<tr>
<td>Anions</td>
<td></td>
</tr>
<tr>
<td>Peptides</td>
<td></td>
</tr>
<tr>
<td>Enzyme treatments</td>
<td></td>
</tr>
<tr>
<td>Oxygenases</td>
<td></td>
</tr>
<tr>
<td>o-Methyl transferases</td>
<td></td>
</tr>
<tr>
<td>Proteases</td>
<td></td>
</tr>
</tbody>
</table>
The choice of one approach over another will result from an evaluation of inhibitor performance, treatment cost, organoleptic impact, and toxicity/regulatory concerns.

II. REDUCING AGENTS

The major role of reducing agents or antioxidants in the prevention of browning is their ability to chemically reduce the enzymatically formed or endogenous \(\alpha \)-quinones to the colorless diphenols, or react irreversibly with the \(\alpha \)-quinones to form stable colorless products analogous to the action of sulfites (Figure 2).\(^{19-21}\) The effect of reducing agents can be considered temporary because these compounds are oxidized irreversibly by reaction with pigment intermediates, endogenous enzymes, and metals such as copper. Thus, reducing agents are effective for the time period determined by their rate of consumption. The nonspecificity of reducing agents can also result in products with off-flavors and/or off-colors.

A. Ascorbic Acid and Ascorbyl Derivatives

1. Ascorbic Acid and Erythorbic Acid

Ascorbic acid and its isomer, erythorbic acid (Figure 3), have frequently been used interchangeably as antioxidants in the food industry. Their function in food systems is (1) to act as a free radical scavenger and thereby prevent oxidation, (2) to alter the redox potential of the system, and (3) to reduce undesirable oxidative products. The main role of ascorbic acid and erythorbic acid in the prevention of enzymatic browning is their ability to reduce the \(\alpha \)-quinones to diphenols (Figure 2).\(^{22}\) The effect of these agents directly on the enzyme, PPO, has been controversial and remains to be proven.\(^{21,23,24}\) Early studies indicated that ascorbic acid had no direct effect on the activity of PPO\(^{25,26}\) and neither activated nor inhibited the enzyme;\(^{27}\) however, activation of PPO by ascorbic acid was reported by Krueger.\(^{28}\) Conversely, several reports claim inactivation of the enzyme by ascorbic acid.\(^{29-31}\) Golan-Goldhirsh and Whitaker\(^{24}\) reported decreased PPO activity upon incubation of the mushroom enzyme with ascorbic acid in the absence of phenolic substrates. A more detailed polarographic investigation of this phenomenon indicated that the inactivation was biphasic; there was an initial slow rate of inactivation followed by a fast rate of inactivation that decreased with time. The inactivation appeared to be irreversible, although after electrophoresis some isoenzymes regained activity. Janovitz-Klapp et al.\(^{32}\) studied the effect of increasing concentrations of ascorbic and erythorbic acid on apple PPO both spectrophotometrically (color formation) and polarographically (\(O_2\) uptake). As was reported previously concerning the use of PPO from other sources,\(^{21,23,24,33}\) in the presence of either reducing agent, spectrophotometric assays exhibited an initial lag in the absorbance change that was followed by a slow increase in reaction rate, whereas immediate oxygen uptake was observed by polarography. The greater the reductant concentration, the longer the initial lag period. The rate of initial increase in the absorbance following the lag period reflects the effect of the reductant concentration on the inactivation of PPO, but the length of the lag period is due to the effect of the chemical reduction of the \(\alpha \)-quinones. By spectrophotometry, the \(I_{50} \) value (the inhibitor concentration that yields 50% inhibition of enzyme activity) was 0.24 mM for ascorbic acid, whereas by polarography concentrations of less than 0.5 mM ascorbic acid had no effect on oxygen consumption. These results suggest that enzyme activity was unaffected by ascorbic acid at these...
concentrations; however, the products of catalysis were reduced back to the nonabsorbing substrates. The decreased activity of PPO following the lag phase may be due to the decrease in oxygen concentration in the assay mixture. Therefore, the observed effects of reductants on PPO are dependent on the assay method, which may account for some of the apparently conflicting reports in the literature as to the effects of ascorbic and erythorbic acids on PPO.

Although the mode of action of ascorbic and erythorbic acid is the same, ascorbic acid has been reported to be a more effective inhibitor of browning than erythorbic acid. Nevertheless, recommended-use concentrations of the two reducing agents are similar. Erythorbic acid has been reported to undergo copper-catalyzed oxidation more readily than ascorbic acid in aqueous model systems and food products. As copper is present in trace amounts in almost all food systems, the difference in efficacy of the two reducing agents can be attributed to the faster rate of oxidation of erythorbic acid. Sapers and Ziolkowski, in a more recent comparison of erythorbic and ascorbic acid as inhibitors of enzymatic browning in apples, showed that both reducing agents were similar in effectiveness in apple juice (0.125 or 0.250% w/v ascorbic or erythorbic acid). However, under identical treatment conditions, plugs of Winesap and Red Delicious apples showed longer time periods before the onset of browning with ascorbic acid when compared with erythorbic acid. The performance of erythorbic and ascorbic acid as browning inhibitors appears to be dependent on the specific food system. Therefore, one compound cannot be substituted for the other without prior experimental evaluation of their equivalence.

Another serious shortcoming of either ascorbic or erythorbic acid as an antibrowning agent is that they are easily oxidized by endogenous enzymes, as well as decomposed by iron or copper-catalyzed autoxidation to form dehydroascorbic acid. Ascorbic acid, when oxidized by these reactions or used at elevated concentrations, may exert prooxidant effects.

Another major problem that limits the efficacy of ascorbic acid and erythorbic acid when compared with sulfites is their insufficient penetration into the cellular matrix of the fruit or vegetable pieces. Sapers et al. have investigated pressure and vacuum infiltration of ascorbic and erythorbic acid into the cut surfaces of raw apples and potatoes to improve the efficiency of inhibition. Comparison of apple plugs treated by pressure or vacuum infiltration with 2.25% sodium ascorbate or erythorbate, and 0.2% calcium chloride, showed that plugs infiltrated at pressures of about 34 kPa had more uniform uptake of the treatment solutions and less extensive water-logging than plugs vacuum-infiltrated at 169 to 980 mB. The storage life of Red Delicious and Winesap apple plugs and dice can be extended by 3 to 7 d when treated by pressure infiltration, when compared with dipping at atmospheric pressure for 5 min. There is a trade-off between the concentration of inhibitor used and the choice of method of application: the more expensive pressure infiltration process would permit the use of lower concentrations of ascorbic or erythorbic acid to control browning than is required with dipping at atmospheric pressure, but infiltrated dice samples gradually became water-logged during storage and required de-watering by centrifugation or partial dehydration. The storage life of Brown Russet potato plugs was extended by 2 to 4 d when treated by pressure infiltration at 103 kPa with solutions containing 4% ascorbic acid, 1% citric acid, and 0.2% calcium chloride, when compared with dipping at atmospheric pressure for 5 min. The same pressure infiltration procedure has no effect on potato dice.

These reducing agents are relatively reactive compounds and can react with other components in the food system, resulting in deleterious effects. Golan-Goldhirsh and Whitaker reported that although ascorbic acid inhibited browning in avocado extracts assayed spectrophotometrically, the addition of ascorbic acid enhanced browning of avocado pulp. In tests on shrimp to evaluate the efficacy of ascorbic acid in the prevention of PPO-catalyzed "blackspot", the ascorbic acid-treated samples were found to develop a distinct yellow off-color.

2. Ascorbyl Phosphate Esters

The rapid oxidation of ascorbic acid to dehydroascorbic acid has led to the development of
ascorbic acid derivatives with increased stability. Cutola and Larizza reported the phosphorylation of ascorbic acid. Since then a number of 2- and 3-phosphate and phosphinate esters of ascorbic acid have been synthesized. Ascorbic acid-2-phosphate and ascorbic acid-2-triphosphate have been investigated as stable alternative sources of ascorbic acid for the inhibition of browning at the cut surfaces of raw apples, potatoes, and in fruit juices. These esters release ascorbic acid when hydrolyzed by acid phosphatases. The phosphate esters were less effective than ascorbic acid in the prevention of browning of cut potatoes but were more effective than similar concentrations of ascorbic acid in the prevention of browning on the cut surfaces of Red Delicious or Winesap apple plugs. The improved performance of the esters may be due primarily to their oxidative stability, as seen by the longer lag times for the onset of browning obtained with these derivatives when compared with equivalent concentrations of ascorbic acid.

Ascorbyl phosphate esters used in combination with citric acid (1% final concentration) were not as effective, probably due to the inhibition of the acid phosphatases at low pH. Also, the failure of the esters to prevent browning of apple juice may result from low activity of endogenous acid phosphatase due to inactivation of the enzyme during preparation or the low pH of the system. The adverse effect of the addition of Tween may be due to its ability to solubilize significant quantities of the membrane- or organelle-bound PPO. Highly lipophilic emulsifying agents such as Tween 60 and EC-25 decreased the effectiveness of the esters in the prevention of browning of apple juice. The adverse effect of the addition of Tween may be due to its ability to solubilize significant quantities of the membrane- or organelle-bound PPO. Also, activation of PPO by detergents has been reported previously.

Mixed results were obtained when the combination of ascorbyl-fatty-acid esters and emulsifying agents were evaluated as antibrowning agents for apple plugs. Ascorbyl palmitate dispersions at pH 7.0 in combination with EC-25 or Durlac 100 were more effective than equivalent concentrations of ascorbic acid. However, the ascorbyl palmitate tended to precipitate on the surface of the apples during storage, giving inconsistent results. Treatment of apple plugs with combinations of ascorbyl laurate or ascorbyl decanoate with EC-25, Durlac 100, or less lipophilic emulsifiers like Tween 60 or 80, tended to induce the browning of apple plugs. The adverse effect of the addition of the emulsifiers may be due to the disruption of the cell membranes at the cut surface of the fruit, resulting in leakage of PPO and its substrates, thereby increasing the performance of the esters was less effective or similar to that of free ascorbic acid initially but was superior to that of ascorbic acid after longer storage periods. The combination of ascorbyl decanoate and ascorbic acid was significantly more effective than either agent alone and together they can prevent browning of apple juice for up to 24 h.

Cort reported that the ascorbyl-fatty-acid esters needed to be solubilized, i.e., by adjusting the pH to 9.0, to act as antibrowning agents. Sapers et al. investigated the effect of emulsifying agents as stabilizers of aqueous dispersions of esters at concentrations of 1.14 mM in apple juice. Stable dispersions could be prepared by using hydrophilic emulsifying agents such as Tween 60, Santone 8-1-0, Tween 80, EC-25, or EC-25 at ratios in the range of 1:2 to 2:1 (ratio of emulsifying agent to ester). Highly lipophilic emulsifying agents such as Durlac 100 and Durlac 100 were less effective than equivalent concentrations of ascorbic acid. However, the ascorbyl palmitate tended to precipitate on the surface of the apples during storage, giving inconsistent results. Treatment of apple plugs with combinations of ascorbyl laurate or ascorbyl decanoate with EC-25, Durlac 100, or less lipophilic emulsifiers like Tween 60 or 80, tended to induce the browning of apple plugs. The adverse effect of the addition of the emulsifiers may be due to the disruption of the cell membranes at the cut surface of the fruit, resulting in leakage of PPO and its substrates, thereby increasing the performance of the esters was less effective or similar to that of free ascorbic acid initially but was superior to that of ascorbic acid after longer storage periods. The combination of ascorbyl decanoate and ascorbic acid was significantly more effective than either agent alone and together they can prevent browning of apple juice for up to 24 h.

Cort reported that the ascorbyl-fatty-acid esters needed to be solubilized, i.e., by adjusting the pH to 9.0, to act as antibrowning agents. Sapers et al. investigated the effect of emulsifying agents as stabilizers of aqueous dispersions of esters at concentrations of 1.14 mM in apple juice. Stable dispersions could be prepared by using hydrophilic emulsifying agents such as Tween 60, Santone 8-1-0, Tween 80, EC-25, or EC-25 at ratios in the range of 1:2 to 2:1 (ratio of emulsifying agent to ester). Highly lipophilic emulsifying agents such as Durlac 100 and Durlac 100 were less effective than equivalent concentrations of ascorbic acid. However, the ascorbyl palmitate tended to precipitate on the surface of the apples during storage, giving inconsistent results. Treatment of apple plugs with combinations of ascorbyl laurate or ascorbyl decanoate with EC-25, Durlac 100, or less lipophilic emulsifiers like Tween 60 or 80, tended to induce the browning of apple plugs. The adverse effect of the addition of the emulsifiers may be due to the disruption of the cell membranes at the cut surface of the fruit, resulting in leakage of PPO and its substrates, thereby increasing the performance of the esters was less effective or similar to that of free ascorbic acid initially but was superior to that of ascorbic acid after longer storage periods. The combination of ascorbyl decanoate and ascorbic acid was significantly more effective than either agent alone and together they can prevent browning of apple juice for up to 24 h.

Cort reported that the ascorbyl-fatty-acid esters needed to be solubilized, i.e., by adjusting the pH to 9.0, to act as antibrowning agents. Sapers et al. investigated the effect of emulsifying agents as stabilizers of aqueous dispersions of esters at concentrations of 1.14 mM in apple juice. Stable dispersions could be prepared by using hydrophilic emulsifying agents such as Tween 60, Santone 8-1-0, Tween 80, EC-25, or EC-25 at ratios in the range of 1:2 to 2:1 (ratio of emulsifying agent to ester). Highly lipophilic emulsifying agents such as Durlac 100 and Durlac 100 were less effective than equivalent concentrations of ascorbic acid. However, the ascorbyl palmitate tended to precipitate on the surface of the apples during storage, giving inconsistent results. Treatment of apple plugs with combinations of ascorbyl laurate or ascorbyl decanoate with EC-25, Durlac 100, or less lipophilic emulsifiers like Tween 60 or 80, tended to induce the browning of apple plugs. The adverse effect of the addition of the emulsifiers may be due to the disruption of the cell membranes at the cut surface of the fruit, resulting in leakage of PPO and its substrates, thereby increasing the performance of the esters was less effective or similar to that of free ascorbic acid initially but was superior to that of ascorbic acid after longer storage periods. The combination of ascorbyl decanoate and ascorbic acid was significantly more effective than either agent alone and together they can prevent browning of apple juice for up to 24 h.

3. Ascorbyl Fatty Acid Esters

Alternative stable sources of ascorbic acid are the ascorbyl-6-fatty-acid esters (ascorbyl palmitate, laurate, and decanoate). The ascorbyl-6-fatty-acid esters, when added to Granny Smith apple juice at concentrations as high as 1.14 mM (equivalent to 0.02% ascorbic acid), inhibited browning for at least 6 h. The performance of the esters was less effective or similar to that of free ascorbic acid initially but was superior to that of ascorbic acid after longer storage periods. The combination of ascorbyl decanoate and ascorbic acid was significantly more effective than either agent alone and together they can prevent browning of apple juice for up to 24 h.

Cort reported that the ascorbyl-fatty-acid esters needed to be solubilized, i.e., by adjusting the pH to 9.0, to act as antibrowning agents. Sapers et al. investigated the effect of emulsifying agents as stabilizers of aqueous dispersions of esters at concentrations of 1.14 mM in apple juice. Stable dispersions could be prepared by using hydrophilic emulsifying agents such as Tween 60, Santone 8-1-0, Tween 80, EC-25, or EC-25 at ratios in the range of 1:2 to 2:1 (ratio of emulsifying agent to ester). Highly lipophilic emulsifying agents such as Durlac 100 and Durlac 100 were less effective than equivalent concentrations of ascorbic acid. However, the ascorbyl palmitate tended to precipitate on the surface of the apples during storage, giving inconsistent results. Treatment of apple plugs with combinations of ascorbyl laurate or ascorbyl decanoate with EC-25, Durlac 100, or less lipophilic emulsifiers like Tween 60 or 80, tended to induce the browning of apple plugs. The adverse effect of the addition of the emulsifiers may be due to the disruption of the cell membranes at the cut surface of the fruit, resulting in leakage of PPO and its substrates, thereby increasing the
browning reaction. In essence, emulsifying agents increase the stability of ascorbyl ester dispersions but have detrimental effects on their ability to function as antibrowning agents.

4. Miscellaneous Ascorbic Acid Derivatives

The preparation and use of L-5,6-O-isopropylidene-2-O-methylcarbo:methyl ascorbic acid and ascorbic acid vic-glycols, produced by reaction of dioxalan-based compounds with organic acids such as acetic acid, were described recently. Both of these types of derivatives were claimed to be more stable than ascorbic acid and useful for the prevention of browning of foods in addition to maintaining freshness and flavor.

B. Sulfhydryl Compounds

Many sulfhydryl-containing reducing agents such as β-mercaptoethanol, dithiothreitol, and thiourea will probably never be approved for food use as antibrowning agents. Although much more effective than ascorbic acid, use of other, more acceptable sulfhydryl compounds, such as reduced glutathione, is too expensive to be a practical commercial alternative.

Practical alternatives in this category may be limited to sulfur-containing amino acids such as L-cysteine, L-cystine, and D,L-methionine. The potential for the use of L-cysteine and other thiols has been recognized for a long time, although relatively little attention has been devoted to these compounds. Walker and Reddish reported the use of cysteine in the prevention of browning of apple products for over 24 h without the introduction of undesirable off-flavors. L-Cysteine (10 mM) was reported to be more effective than sodium bisulfite at the same concentration in the prevention of browning of Jerusalem artichoke extracts. Kahn found 0.32 mM L-cysteine to be very effective for the inhibition of avocado and banana homogenate browning. L-Cysteine retards the browning of pear juice concentrates when used at concentrations of 0.5 to 2 mM. Unfortunately, the concentrations of cysteine necessary to achieve acceptable levels of brown-

ing inhibition have negative effects on the taste of the treated foods.

The primary mode of action of sulfhydryl compounds in the prevention of browning is to react with the o-quinones formed by enzymatic catalysis to produce stable, colorless adducts (Figure 4). Richard et al., among others, have elucidated the structures of the adducts of cysteine with 4-methylcatechol, chlorogenic acid, (-)-epicatechin, (+)-catechin, pyrocatechol, and L-dopa, and the product of glutathione and caftaric acid condensation. Cysteine was found to form a single addition product with 4-methylcatechol and chlorogenic acid, and two products with the epicatechin and catechin. The latter two addition products differed in the position of the cysteine moiety in the B ring of the parent compound. The 2'- and 5'-positions were found to react with cysteine at equivalent rates. The o-diphenolic cysteine and glutathione adducts are not substrates for PPO, whereas PPO inhibition has been reported for the cysteinylcatechol.

III. CHELATING AGENTS

As mentioned previously, PPO contains copper in its active site. In the context of PPO-catalyzed browning, chelating agents are believed to either bind to the active site copper of PPO or reduce the level of copper available for incorporation into the holoenzyme.

A. EDTA

Ethylenediaminetetraacetic acid (EDTA) or its sodium salt is used widely in the food industry as a metal chelating agent. The log Kₐ (stability constant) for binding of copper is 18.8. As an antibrowning agent, EDTA is generally used in combination with other agents to eliminate browning (see Section VIII).

B. Phosphate-based Compounds

Sodium acid pyrophosphate, polyphosphate, or metaphosphate are chelating agents and have
been used as antibrowning agents for fresh-peeled fruits and vegetables.71 The phosphate compounds have low solubility in cold water and, hence, are normally used by predissolving the compounds in water or at low concentration. Phosphate-based agents typically are used at levels of 0.5 to 2\% (final concentration in the dip solution) in combination with other antibrowning agents (see Section VIII).

Sporix™, an acidic polyphosphate mixture that has a three-dimensional network structure, has been evaluated as an antibrowning agent in combination with ascorbic acid.72 Sporix™ is recommended for use on acidic foods such as fruit-based juices, nectars, and carbonated beverages.73 Sporix™ at about 0.6\% was more effective than ascorbic acid (0.01\%) in preventing browning of Granny Smith apple juice for 24 h. If the two compounds were used in combination, a much lower concentration of Sporix™ was needed to obtain the same degree of browning inhibition. The effectiveness of the combination to delay the onset of browning was synergistic, not simply additive. The effect of the Sporix™-ascorbic acid mixture was pH dependent. Increasing the pH of the treated juice from 3.1 to 3.3 resulted in a more rapid onset of browning and an increase in the rate of the browning reaction. Winesap or Red Delicious apple plugs dipped into solutions containing Sporix™ (0.24\%) and ascorbic acid (1\%) showed little or no evidence of browning after 24 h at 20°C. Control samples that received no treatment browned within a few hours.

As noted above, the combination of ascorbic acid and Sporix™ as an antibrowning agent can extend the lag time before the onset of browning and also results in a reduced rate of browning after the lag time has been exceeded. The increased lag time effect most likely results from the inhibition of PPO- and copper-catalyzed oxidative reactions by chelation of copper by Sporix.™ The combination of Sporix™ with other antibrowning agents will be reviewed below (see Section VIII).

IV. ACIDULANTS

The pH optimum of polyphenol oxidase activity varies with the source of the enzyme and the particular substrate but in most cases it has an optimum pH in the range of pH 6 to 7.74 PPO preparations from several sources are reported to be inactivated below pH 4.0.75,76 By lowering the pH of the media below 3, the enzyme is effectively inhibited. Hence, the role of acidulants is to maintain the pH well below that necessary for optimal catalytic activity.

A. Citric Acid

The most widely used acid in the food industry for the prevention of browning is citric acid. Citric acid may have a dual inhibitory effect on PPO by reducing the pH and by chelating the copper at the enzyme-active site. This acidulant is often used in blended products in combination with other antibrowning agents (see Section VIII). Treatment of fresh fruits or vegetables with a solution of citric acid (typically, 0.5 to 2\% w/v) helps control enzymatic browning. McCord and Kilara77 studied the mechanism of the inactivation of PPO in processed mushrooms. They reported that citric acid was effective at pH 3.5 and that it could inhibit both enzymatic and non-enzymatic browning. Mushrooms showed no improvement in color when they were washed and soaked in water at pH 3.5, whereas when the pH
was lowered in vacuum or blanching operations significant improvement in color over nonacidi-
fied controls was observed.

Reitmeier and Buescher reported that treat-
ment for up to 30 s with a 5% citric acid solution
afforded a temporary reduction in the browning
of snap bean cut-end-tissue homogenates. A 67%
inhibition was seen after 24 h, which decreased
to 13% inhibition after 48 h.

B. Other Acidulants

Other alternatives to citric acid are organic
acids, such as malic, tartaric, and malonic, and
inorganic acids such as phosphoric and hydro-
chloric. When compared with citric acid, the main
disadvantages of these acids are factors such as
availability, price, and taste of the food product
after treatment.

V. PPO INHIBITORS

There are numerous reports on specific PPO
inhibitors. Only those that are of practical rele-
vance to food use are included in the following
section.

A. Substituted Resorcinols

Protease preparations, especially ficin, the
protease from fig (Ficus sp.) latex, appear to
function as browning inhibitors in several food
systems (see Section VII.C). The ficin pre-
parations employed were partially purified and the
possibility existed that a nonprotease component
of the preparation was responsible for the ob-
served antibrowning effect. Indeed, preparations
of either heat-inactivated ficin or ultrafiltered
fig extract were as effective in PPO inhibition
as the preparation containing the active
protease.

Three inhibitors were isolated from the ficin
preparations by conventional and high-perfor-
mancl liquid chromatography. Based on ana-
litical data for homogeneous preparations, the
inhibitors present in the fig extract were found
to be analogous 4-substituted resorcinols. The
compounds, identified as 2,4-dihydroxydihydro-
cinnamic acid, 2,4-dihydroxydihydrocin-
namoyl putrescine, and bis-(2,4-dihydroxydihydrocin-
namoyl)-spermidine, are novel, plant secondary
metabolites (Figure 5). 2,4-Dihydroxydihydro-
cinnamic acid has also been isolated from the
edible fig fruit, in addition to the fig latex from
which the ficin preparation had been derived.

A structurally related PPO inhibitor, bis-(2,4-
dihydroxydihydrocinnamoyl)-putrescine was
produced as a secondary reaction during the in
vitro synthesis of 2,4-dihydroxydihydrocinna-
moyl-putrescine (Figure 6).

The \(I_{50} \) values for the naturally occurring in-
hibitors and bis-(2,4-dihydroxydihydrocinna-
moyl)-putrescine were determined using mush-
room PPO in an in vitro assay system. The \(I_{50} \)
is defined as the inhibitor concentration at which
50% inhibition of PPO activity is obtained. The
results are presented in Table 2.

In addition to the natural compounds, syn-
thetic 4-substituted resorcinols were screened for
efficacy as PPO inhibitors. \(I_{50} \) values were de-
termined and are summarized in Table 3. Re-
sorcinol is a poor inhibitor with an \(I_{50} \) in the
millimolar range; however, substitutions in the
4-position yield decreased \(I_{50} \) values. The lowest
values are obtained with hydrophobic substi-
tuents in the 4-position such as 4-hexyl-, 4-do-
decyl-, and 4-cyclohexylresorcinol with \(I_{50} \)
values of 0.5, 0.3, and 0.2, respectively.

Resorcinol derivatives with substitutions in
the 5-, 2-, and 1,3-positions were also evaluated
as PPO inhibitors. Resorcinols that were 5-sub-
stituted exhibited an inhibitory trend analogous
to that seen with 4-substituted resorcinols: hy-
drophobic substituents of increasing chain length
yield inhibitors with decreasing \(I_{50} \) values. Al-
though the 5-substituted resorcinols appear to be
effective PPO inhibitors in vitro and several of
these compounds also occur in nature, their
use in food applications was not pursued due to
the toxic and irritant properties associated with
this class of compounds. Substitutions in the
2- and 1,3-positions led to greatly increased \(I_{50} \)
values relative to resorcinol. These compounds
exhibited only low levels of PPO inhibition even
at the limit of their respective solubilities.

Of the 4-substituted resorcinols, 4-hexyle-
resorcinol may have the greatest potential for use

in the food industry due to its low I_{50} in the spectrophotometric assay system, positive preliminary results from tests in actual food systems (see below), and the fact that this compound has a long, safe history of human use in nonfood applications. Numerous toxicological studies on
TABLE 2

\(I_{50} \) Values for 4-Substituted Resorcinols as PPO Inhibitors

<table>
<thead>
<tr>
<th>Compound</th>
<th>(I_{50}) (\mu M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-Dihydroxydihydrocinnamic acid</td>
<td>25</td>
</tr>
<tr>
<td>2,4-Dihydroxydihydrocinnamoyl putrescine</td>
<td>5</td>
</tr>
<tr>
<td>bis-(2,4-Dihydroxydihydrocinnamoyl)-putrescine</td>
<td>5</td>
</tr>
<tr>
<td>bis-(2,4-Dihydroxydihydrocinnamoyl)-spermidine</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLE 3

\(I_{50} \) Values for Synthetic 4-Substituted Resorcinols as PPO Inhibitors

![Resorcinol Structure](image)

<table>
<thead>
<tr>
<th>R</th>
<th>(I_{50}) (\mu M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2700</td>
</tr>
<tr>
<td>Hexanoyl</td>
<td>750</td>
</tr>
<tr>
<td>Carboxyl</td>
<td>150</td>
</tr>
<tr>
<td>Ethyl</td>
<td>0.8</td>
</tr>
<tr>
<td>Hexyl</td>
<td>0.5</td>
</tr>
<tr>
<td>Dodecyl</td>
<td>0.3</td>
</tr>
<tr>
<td>Cyclohexyl</td>
<td>0.2</td>
</tr>
</tbody>
</table>

4-hexylresorcinol support potential food use for this compound. These studies are the subject of a recent review relative to use of 4-hexylresorcinol in foods.\(^{90}\)

The initial 4-hexylresorcinol food application targeted for intensive investigation was the prevention of shrimp melanosis (blackspot). Blackspot is a cosmetic discoloration caused by endogenous shrimp PPO and has a negative impact on the commercial value of the shrimp product. The efficacy of 4-hexylresorcinol in maintaining the high quality of landed shrimp has been shown in both laboratory and field trials under a variety of process conditions.\(^{91,92}\) This highly effective inhibitor is substantially more effective than bisulfite on a weight-to-weight basis, it should prove to be competitive with bisulfite on a cost basis, and it will require no changes in the on-board or ex-vessel handling of the shrimp product.

In addition to being a water soluble, stable compound, 4-hexylresorcinol is also nontoxic, nonmutagenic, and noncarcinogenic and is generally recognized as safe (GRAS) for use in the prevention of shrimp melanosis.\(^{90}\) The use of 4-hexylresorcinol as a processing aid for the inhibition of shrimp melanosis has no negative impact on taste, texture, or color of the treated shrimp product, due to very low residuals (<1 ppm) on shrimp meat.\(^{93,94}\)

Preliminary results from laboratory studies indicate that 4-hexylresorcinol inhibits browning of fresh and hot-air dried apple and potato slices, avocado (guacamole), and in liquid systems such as apple and white grape juices (McEvily, A. J., unpublished results). Note that 4-hexylresorcinol appears to function well in the prevention of apple juice browning, whereas resorcinol has been reported to be neither a substrate nor an inhibitor of apple PPO and, in another study, was found to stimulate apple PPO-catalyzed chlorogenic acid oxidation.\(^{95}\)

Resorcinols that are 4-substituted have several advantages over sulfites for use on foods. Among others, these include: (1) these compounds are specific, potent polyphenol oxidase inhibitors allowing use at much lower concentrations than sulfites; (2) 4-substituted resorcinols do not "bleach" pigments as excess sulfites can, and, therefore, use of excessive concentrations is not encouraged; and (3) the 4-substituted resorcinols are more chemically stable relative to sulfites. Because much lower concentrations of resorcinol derivative are required, these agents are also cost-competitive with sulfite.

B. Aromatic Carboxylic Acids

Aromatic carboxylic acids are inhibitors of
PPO due to their structural similarities with the phenolic substrates.96–98 In model systems, the type of inhibition observed is dependent on the substrate being assayed and was either competitive, noncompetitive, or mixed.98 Using 4-methylcatechol as the substrate, the inhibition of grape PPO by cinnamic and benzoic acids was competitive, but with caffeic acid as the substrate the mode of inhibition was noncompetitive.99 Cinnamic acid and its analogues, p-coumaric, ferulic, and sinapic acids, were found to be potent inhibitors of apple PPO,100,101 with \(K_i \) values from 2 to 30 times lower than benzoic acid and its analogues, p-hydroxybenzoic, vanillic, and syringic acids. Unsaturation, such as in the side-chain of cinnamic acid, is an important structural determinant in the potency of inhibitors. The benzoic acid derivatives were more effective inhibitors than phenylacetic, phenylpropionic, and p-hydroxyphenylpropionic acids.32 For the cinnamic and benzoic acid series of compounds, p-hydroxy substitution slightly enhances the inhibitory characteristics, whereas the addition of one or two methoxy groups in the meta-positions reduces the inhibitory properties of the compounds. Esterification of the carboxy group of benzoic acid or cinnamic acid results in a considerable decrease in inhibition.99,100,102 The degree of inhibition by the acids is pH dependent, increasing as the pH is decreased. Robb et al.102 postulated that the undissociated carboxylic group is necessary to form a complex with the copper at the enzyme active site.

The use of cinnamic, p-coumaric, and benzoic acid as antibrowning agents for apple juice was investigated by Walker.103 Various concentrations of the acids were added to freshly prepared opalescent apple juice and the mixtures were aerated to promote browning. Cinnamic acid (or its more soluble sodium salt) at levels of 0.01% or less was reported to be the most effective antibrowning agent for providing long-term inhibition of browning but after storage for 24 h the treatment induced the browning of the plugs. The combination of cinnamate and ascorbic acid in dips was more effective than the use of ascorbic acid alone and resulted in significant extension of the lag time for the onset of browning of apple plugs. The tendency of cinnamic acid or its sodium salt to induce browning is a major problem with the use of these compounds. The slow increase in the browning of the food suggests that the exogenous cinnamate at the cut surface is gradually being converted to a PPO substrate by cinnamate hydroxylases or other enzymes involved in the biosynthesis of polyphenols.104 Hydroxylation of cinnamate results in p-coumaric acid, a PPO inhibitor, which might be hydroxylated further to caffeic acid, a substrate.105

Sodium benzoate showed concentration-dependent antibrowning properties in Granny Smith apple juice.45 Combinations of 0.1% sodium benzoate and 0.02% sodium ascorbate (the acid was not used to avoid precipitation of the benzoate) or ascorbic acid-2-phosphate appeared to have a synergistic effect in the prevention of browning of the juice for 24 h. The main effect of the combination was to increase the lag time for the onset of browning. Granny Smith apple plugs dipped into solutions containing benzoate alone or in combination with ascorbic acid showed short-term protection against browning but, subsequently, severe browning was induced in samples stored more than 6 h. As in the case of cinnamate, benzoate may be undergoing slow conversion to a PPO substrate.

C. Aliphatic Alcohols

Montedaro and Canterelli106 and Kidron et al.107 have reported the inhibition of PPO by ethanol, but inhibition by other aliphatic alcohols was not studied extensively until more recently. Valero et al.108 studied the effect of natural aliphatic alcohols on grape PPO. The authors reported that inhibition increases with the number of carbon atoms of the aliphatic alcohol (from one to five carbon atoms). The order of effectiveness for various alcohols appeared to be primary > secondary > tertiary alcohols. The authors attempted to correlate the inhibitory effects with
the hydrophobic nature of the alcohols as measured by their respective octanol/water partition. For primary alcohols, the relationship was non-linear, suggesting that other factors must also be involved.

D. Amino Acids, Peptides, and Proteins

Inhibition of browning in apple slices, grape juice, and model systems by honey was studied by Lee and co-workers.109,110 White grapes and sliced fruit dipped into a 20% solution of honey before conversion to yellow raisins or dried fruit maintained their natural flavor, texture, and color, when compared with sulfites, and did not have a honey taste.111 As sugar solutions inhibit browning by reducing the concentration of dissolved oxygen and the rate of diffusion of oxygen into the fruit tissue,112 the rates of browning of apple slices after treatment with 8% sucrose (level of sugar in 10% honey) and 10% honey were compared. The results showed that the apple slices treated with honey showed the least amount of browning. This suggested that the honey contains inhibitors of PPO in addition to sugars. Purification of the honey by Bio-Gel P-2 and Sephadex G-15 columns gave a fraction that had high inhibitory activity. The compound responsible for the inhibition of PPO appeared to be a small peptide with an approximate molecular weight of 600. Alternatively, Chang79 suggested that a bee protein complexes with fruit tannins, thereby preventing oxidative discoloration.

Proteins, peptides, or amino acids can affect PPO-catalyzed browning by direct inhibition of the enzyme and by reaction with the quinonoid products of PPO catalysis. Kahn61 studied the effect of proteins, protein hydrolyzates, and amino acids on the activity of mushroom, avocado, and banana PPO using D,L-dopa or 4-methylcatechol as substrate. Casein hydrolyzate and bovine serum albumin did not inhibit mushroom or avocado PPO. Millimolar concentrations of the L-amino acids, lysine, glycine, histidine, and phenylalanine (in increasing order of effectiveness) weakly inhibited mushroom PPO, with 60% maximal inhibition. Pigment formation by mushroom PPO was decreased by triglycerine, diglycerine, and glycerine (in decreasing order of effectiveness). In \textit{in vivo} experiments with banana and avocado homogenates, histidine (230 mM) exhibited slight inhibition only of avocado browning, whereas lysine (230 mM) was ineffective on both foods. Of all amino acids tested, L-cysteine was most effective (see Section II, B).

E. Anions

Inorganic halides have been reported to be inhibitors of PPO, but other anions, such as sulfate or nitrate, have no effect.113 This could be due to the larger ionic radii of these latter anions. The inhibition by halides is pH dependent and decreases as the pH is increased, with maximum inhibition in the pH range 3.5 to 5.0.97 The pH effect on the inhibition by halides was explained by the interaction between the negatively charged inhibitor and a positively charged imidazole group at the active site of PPO. The order of decreasing inhibitory power of the halides has been reported to be F > Cl > Br > I. This is exactly the order of decreasing ionic radii and, hence, steric effects may explain the differences. More recent investigations by Martinez et al.114 have shown that the order of effectiveness for halides as PPO inhibitors was dependent on the source of the enzyme. The authors postulated that the observed effect was the combination of the accessibility of the active site copper to the halide, and the stabilization of the copper-halide complex thus formed. The mode of inhibition of apple PPO by the halides has been investigated by Janovitz-Klapp et al.32 The inhibition of sodium chloride at pH 4.5 was noncompetitive as determined by Lineweaver-Burk analysis. Other halides tested at the same pH appeared to be competitive inhibitors. Sodium fluoride appeared the most potent, with an apparent K_i of 0.07 mM, whereas the values for bromide and iodide were 106 and 117 mM, respectively.

Of the halide salts, sodium and calcium chloride at concentrations of 2 to 4\% (w/v) are the compounds most commonly used in the food industry for the inhibition of browning.115 Use of the calcium salt has the added advantage of maintaining the firmness of the pulp tissue by interacting with pectin in the cell walls of the treated food. Recently, zinc chloride has been reported
to be a more effective inhibitor of browning than calcium chloride.116

F. Kojic Acid

Kojic acid (5-hydroxy-2-hydroxymethyl-\(\gamma\)-pyrone) is a metabolite produced by several species of *Aspergillus* and *Penicillium*,117,118 and is found in many fermented Japanese foods.119 Kojic acid is an antibacterial and antifungal agent,120 a reducing agent, and antioxidant,121,122 which has been reported to also inhibit mushroom PPO activity.123 A mixture of ascorbic acid and kojic acid has been patented for use as an antibrowning agent in foods.124

Applewhite et al.125,126 have recently found that kojic acid inhibits the development of melanosis on pink shrimp (*Penaeus duorarum*). A 1-min dip into 1% kojic acid slowed blackspot formation to the same degree as the customary 1.25\% bisulfite dip. Kojic acid was shown to exhibit mixed-type inhibition of PPO directly in oxygen uptake studies, as well as to bleach preformed melanin. These results indicated that the mode of action of kojic acid in the prevention of shrimp melanosis was twofold: direct inhibition of PPO and chemical reduction of the pigment or pigment precursors to colorless compounds. Subsequent studies with PPOs from several plant and crustacean sources have yielded similar results.127

Although the presence of kojic acid in certain foods occurs as a result of natural fermentation processes, its widespread use as a food additive for the inhibition of browning is doubtful because of associated toxicity. Kojic acid has been found to exhibit acute toxic effects in several animal models.120,128,129 Effects included nephrosis and lethality.119 Genetic toxicity in rat liver cells and teratogenicity of chicken embryos by kojic acid have also been observed.119 Studies by Wehner et al.130 and Wei et al.131 indicate that kojic acid is mutagenic in a *Salmonella typhimurium* assay.

In addition to the problems with toxicity, the use of kojic acid in the food industry may be restricted due to the difficulty of large-scale production and high cost.132

VI. COMPLEXING AGENTS

A. Cyclodextrins

Hicks et al.132 obtained a patent on the use of cyclodextrins, cyclic oligosaccharides, as inhibitors of enzymatic browning for raw fruit and vegetable juices. The cyclodextrins inhibit browning by formation of inclusion complexes with or entrapment of PPO substrates or products. The patent also claimed novel compositions of cyclodextrins in combination with other known antibrowning agents, such as reducing agents, acidulants, chelating agents, etc. This approach can be employed in solution by the use of soluble \(\alpha\)-, \(\beta\)-, or \(\gamma\)-cyclodextrins or with insoluble cyclodextrins packed in a column or as a batch treatment process.

\(\beta\)-Cyclodextrin dissolved in Granny Smith apple juice inhibited enzymatic browning for more than 1 h with browning inhibition proportional to cyclodextrin concentrations between 5.9 and 13.6 mM in the juice. \(\alpha\)- and \(\gamma\)-Cyclodextrins were less effective than the \(\beta\)-cyclodextrin. Samples were evaluated by tristimulus colorimetry. Browning inhibition by \(\beta\)-cyclodextrin was enhanced by ascorbic acid (1.14 mM) or addition of other ascorbyl derivatives. Mixtures containing maltosyl-\(\beta\)-cyclodextrin, dimaltosyl-\(\beta\)-cyclodextrin, and \(\beta\)-cyclodextrin were effective at concentrations of 1 and 4\%, with enhancement of inhibition by addition of Sporix™, ascorbic acid, or citric acid. Treatment of green grape, Granny Smith apple, Anjou pear, and celery juices with insoluble cyclodextrin, using a column technique, greatly delayed the onset of browning. For example, the apple juice sample browned significantly within 1 h, whereas browning of the treated sample was prevented for 82 h, at which point the sample was discarded due to microbial growth.

Although cyclodextrins appear somewhat effective in retarding the browning reaction, there are several potential drawbacks to their use. The lack of specificity of inclusion complex formation could result in loss of flavor or color compounds present in low concentrations. The adsorption of flavor or color compounds may be
minimized by use of derivatized cyclodextrins; however, the advantage of derivatization must justify the increased cost. Even for commercially available cyclodextrins at concentrations from 1 to 4%, cost considerations could become prohibitive. This concern would also apply to the insoluble approach if the cyclodextrin could not be recycled in high yield. From a regulatory standpoint, cyclodextrins are not food approved.

B. Chitosan

Chitosan, a naturally abundant polymer of N-acetylglucosamine, inhibits the enzymatic browning of apple and pear juices. Browning inhibition was observed in McIntosh apple juice that had been treated with 200 ppm chitosan and subsequently filtered through diatomaceous earth. A much higher level was necessary to achieve comparable results in Bosc and Bartlett pear juices. Browning of juice obtained from very ripe Bartlett pears was not inhibited by chitosan treatment. The mode of action of chitosan in this application is undefined but may be due to adsorption of the PPO enzyme, substrates, or products, or a combination of these processes. As is the case with cyclodextrins, the use of chitosan as an antibrowning agent would be limited to liquid systems.

VII. ENZYME TREATMENTS

A. Ring-cleaving Oxygenases

An alternative approach to the development of browning, involving the irreversible modification of the phenolic substrates, was proposed by Kelly and Finkle. The authors treated apple juice with the bacterial enzyme protocatechuate-3,4-dioxygenase (PC ase), which catalyzes the oxidative ring-opening reaction and the orthofission of catechols. Juice treated with PC ase in the presence of ascorbic acid did not darken when compared with a control sample of untreated juice. This would be a very expensive process for the inhibition of browning. Also, the authors reported that the rate of ring fission of chlorogenic acid, the major substrate responsible for the browning of apples, was very slow.

B. o-Methyl Transferase

Finkle and Nelson have proposed the use of o-methyl transferase for the prevention of browning of apple juice. The authors treated apple juice with o-methyl transferase and S-adenosylmethionine and showed that the PPO substrates, caffeic and chlorogenic acids, were converted to ferulic acid (an inhibitor of PPO) and feruloylquinic acids, respectively. Unfortunately, this procedure is too expensive to be of any commercial use.

C. Proteases

Taoukis et al. and Labuza reported that certain fruit extracts containing proteases, particularly ficin from fig, inhibit browning in fruit and shrimp. Preliminary studies showed that shrimp dipped for 5 min into a 0.5% (w/v) ficin solution, then stored at 4°C for 4 d on ice and examined for blackspot (melanosis) formation were comparable to sulfite treated shrimp. The authors suggested that the mode of action of the ficin is to inactivate the PPO enzyme via proteolysis. Since the ability of ficin to inhibit browning is unaffected by its heat denaturation or ultrafiltration, other nonenzymatic factors are probably involved in the fig extract inhibition of browning (see Section V). Additionally, as noted by Labuza, the cost of the proteases would narrow their use.

VIII. COMBINATIONS OF ANTIBROWNING AGENTS

The mechanism of inhibition is quite different for each of the categories of enzymatic browning inhibitors discussed above, such as chemical reduction, chelation, enzyme inhibition, etc. These mechanistic differences may al-
TABLE 4
Commercial Antibrowning Ingredients

<table>
<thead>
<tr>
<th></th>
<th>Citric acid</th>
<th>Ascorbic acid</th>
<th>Calcium chloride</th>
<th>Sodium chloride</th>
<th>Phosphate</th>
<th>Dextrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer CE-101P</td>
<td>X</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sexton</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshway Antioxidant</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavor Brite</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potato Fresh</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color Fresh</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Salad Fresh</td>
<td>X</td>
<td>X*</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Crisp and Fresh</td>
<td>X*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* Added as iso-ascorbic (erythorbic) acid.
* Also contains cysteine hydrochloride.
* Also contains aluminum sulfate.
* Added as sodium ascorbate.
* Added as sodium citrate.

Low the use of combinations of antibrowning agents that result in enhancements of activity relative to the use of any single agent individually. Due to the numerous factors that affect the efficacy of an antibrowning agent or combination thereof (i.e., penetration into the tissue, pH, competing processes, side reactions, etc.), the performance of the combined agents must be evaluated empirically for each food item treated. A typical combination may include a chemical reductant (ascorbic acid), an acidulant (citric acid), and a chelating agent (EDTA). In many cases, the enhanced activity of the combined ingredients is additive, although synergism has been claimed for several blends of antibrowning agents. The literature on combined antibrowning agents is too numerous to list here. Following are a representative sample of recent results regarding this category of inhibitors of enzymatic browning.

Most combinations of antibrowning agents cited in the literature or commercially available are ascorbic acid-based compositions. Ponting et al.140,141 describe the use of a solution containing from 0.5 to 1% ascorbic acid and from 0.05 to 0.1% calcium chloride and bicarbonate to maintain a pH between 7 and 9 for the preservation of apple slices. This blend of agents was found to be synergistic and was claimed to be effective on Newtown Pippin apple slices stored for as long as 2 months. A combination of ascorbic acid and a thixotropic gum (i.e., xanthan, guar, tragacanth, etc.) was reported to be effective in reducing deterioration and browning of fruits and vegetables used in salad bars and prepared salads sold in fast food restaurants.142 As mentioned above, mixtures of ascorbic acid and cyclodextrins were reported effective in the inhibition of Granny Smith apple juice browning.133 Ascorbic and citric acid blends appeared to inhibit blackspot development in shrimp, but the use of these agents was precluded by the development of a yellow off-color.41 A solution containing ascorbic acid (0.25 to 1%), calcium chloride (0.5 to 1%), citric acid (0.25 to 1%), and sodium acid pyrophosphate (0.5 to 2%) was claimed to inhibit browning of potatoes, pears, green peppers, apples, and lettuce.143 A combination of ascorbic acid, citric acid, and potassium sorbate in conjunction with vacuum packaging appeared to slow browning of potato slices, but within 30 min after opening the package, onset of browning was observed.144 Dipping of whole, peeled potatoes in a solution containing erythorbic acid, sodium chloride, and sodium pyrophosphate, followed
by packing in ascorbic acid, sorbic acid, and calcium chloride, resulted in potatoes that were less brown and had lower microbial counts than potatoes treated by the customary bisulfite dip protocol.

Other blends that have been reported to be antibrowning agents but do not contain ascorbic or erythorbic acid include solutions of citric acid, sodium chloride, and calcium chloride, cysteine and citric acid, and Sporix™ and citric acid. A partial listing of commercially available antibrowning blends and their constituent ingredients was compiled by Kim and Taub (Table 4).

REFERENCES

128. Friedemann, T. E., Chemical and physiological properties of kojic acid, Science, 80, 34, 1934.
130. Wehner, F. C., Thiel, P. G., Van Rensburg, S. J., and Demasius, I. P. C., Mutagenicity to Salmonella

